• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ EBSCO Scopus GeoRef AJ CNKI
Advanced Search
Volume 11 Issue 2
Jun.  2023
Turn off MathJax
Article Contents
Einlo F, Ekhtesasi MR, Ghorbani M, et al. 2023. Determine the most appropriate strategy for groundwater management in arid and semi-arid regions, Abhar Plain, Iran. Journal of Groundwater Science and Engineering, 11(2): 97-115 doi:  10.26599/JGSE.2023.9280010
Citation: Einlo F, Ekhtesasi MR, Ghorbani M, et al. 2023. Determine the most appropriate strategy for groundwater management in arid and semi-arid regions, Abhar Plain, Iran. Journal of Groundwater Science and Engineering, 11(2): 97-115 doi:  10.26599/JGSE.2023.9280010

Determine the most appropriate strategy for groundwater management in arid and semi-arid regions, Abhar Plain, Iran

doi: 10.26599/JGSE.2023.9280010
More Information
  • Corresponding author: fatemeeinlo@ut.ac.ir
  • Received Date: 2022-07-21
  • Accepted Date: 2023-01-28
  • Available Online: 2023-06-15
  • Publish Date: 2023-06-30
  • Due to growing demand and reduction of water resources and increasing pollution of water, driven by dramatic population and economic growth, arid and semi-arid land’s imminent water problems are nowadays aggravating. This study aims to determine the most appropriate management strategies for balancing the Abhar plain aquifer using the SWOT coupled with AHP technique. The results indicate that weaknesses prevail over strengths as well as threats over opportunities. The placement in the quarter of weaknesses-threats with a defensive strategy indicates the critical condition of the Abhar plain aquifer. The most appropriate solutions to achieve the goal of balancing the groundwater were prioritized by AHP method. According to results, improper management of water consumption with a weight of 72.5% is the most destructive factor in reducing groundwater resources. Among the types of consumption, the effect of an agricultural factor carries a weight of 74.2%. The exploitation of illegal wells, overdraft of exploitation license provisions of wells, reduction of precipitation and traditional irrigation methods were selected as the destructive factors causing the deteriration of groundwater resources. Also, with filling the illegal wells, changing the type of cultivation and greenhouse crops cultivation, installing a smart water meter, observance the provisions of the water exploitation license, implementing integrated pressurized irrigation systems, benefiting from suitable climatic conditions and geographical location for cultivating and developing the low-water use species and industries and on the other hand, with implementing artificial recharge to control the surface water resources and reduce abstraction from groundwater aquifers, the adverse trend of Abhar Plain groundwater resources can be controlled.
  • 加载中
  • Adib A, Habib F. 2016. Strategic planning for spatial development in the historical tissue of Yazd City with a tourism approach. European Online Journal of Natural and Social Sciences, 5(3): 596−605.
    Akbarpour N, Tabibian M. 2015. Pedestrian-oriented approaches for improving lost spaces by using SWOT (Case Study: Seyedqandan Overpass, Tehran), International Conference on Architecture, Structure and Civil Engineering (ICASCE’15), 1-7.
    Alharbi SH, Sayed OA. 2017. Measuring services quality: Tabuk municipal. British Journal of Economics, Management and Trade, 17(2): 1−9. DOI: 10.9734/BJEMT/2017/33021.
    Aspan H, Milanie F, Khaddafi M. 2015. SWOT analysis of the regional development strategy city field services for clean water needs. International Journal of Academic Research in Business and Social Sciences, 5(16): 385−397.
    Ataee M. 2010. Multi-criteria decision, Shahrood University Press, 333.
    Babakus E, Mangold G. 1992. Adapting the SERVQUAL scale to hospital services: An empirical investigation. Health Service Research, 26: 767–780.
    Bani HME, Noori A, Jurík L, et al. 2020. Prioritization of sustainable water management strategies in arid and semi-arid regions using SWOT coupled AHP technique in addressing SDGs. Acta Scientiarum Polonorum Formatio Circumiectus Journal,, 19(2): 35−52. DOI: 10.15576/ASP.FC/2020.19.2.35.
    Bejar-Pizarro M, Ezquerro P, Herrera G. 2017. Mapping groundwater level and aquifer storage variations from in SAR measurements in the Madrid aquifer. Journal of Hydrology, 547: 678−689. DOI: 10.1016/j.jhydrol.2017.02.011.
    Budi I, Bhayangkara WD, Fadah I. 2016. Identification of problems and strategies of the home-based industry in Jember Regency. Agriculture and Agricultural Science Procedia, 9: 363−370. DOI: 10.1016/j.aaspro.2016.02.151.
    Chang HH, Huang WC. 2006. Application of a quantification SWOT analytical method. Mathematical and Computer Modelling, 43: 158−169. DOI: 10.1016/j.mcm.2005.08.016.
    Chen Y, Yu J, Khan S. 2010. Spatial sensitivity analysis of multi-criteria weights in GIS-based land suitability evaluation. Environmental Modelling and Software, 25: 1582−1591. DOI: 10.1016/j.envsoft.2010.06.001.
    Ghobadian R, Bahrami Z, Dabagh BS. 2016. Applied management scenarios predict fluctuations in groundwater levels with conceptual and mathematical models MODFLOW. Journal of Ecohydrology, 3(3): 303-319. (In Persian)
    Ghodsipour H. 2019. Analytical Hierarchy Process. Amir Kabir University Press: 236.
    Hajkowicz S, Collins K. 2007. A review of multiple criteria analysis for water resource planning and management. Water Resource Management, 1553-1566.
    Hajkowicz S, Higgins A. 2008. A comparison of multiple criteria analysis techniques for water resource management. European Journal of Operational Research, 184: 255−265. DOI: 10.1016/j.ejor.2006.10.045.
    Hashemi MFS, Bani HME. 2014. Development of water resources management strategies using the SWOT model to achieve sustainable development Case Study: Shahrood. 2nd National Conference on Sustainable Agricultural Development and the Environment, 20-29. (In Persian)
    Hatefi AAH, Ekhtesasi MR. 2016. Groundwater potentiality through analytic hierarchy process (AHP) using remote sensing and Geographic Information System (GIS). Journal of Geope, 6(1): 75-88.
    Ishizaka A, Labib A. 2009. Analytic hierarchy process and expert choice: Benefits and limitations. Or Insight, 22(4): 201-220.
    Izadi A, Davari K, Alizadeh A, et al. 2008. Application of combined data model in predicting groundwater level. Iranian Irrigation and Drainage Journal, 2: 133-144. (In Persian).
    Kandakoglu A, Akgun I, Topcu J. 2007. Strategy development & evaluation in the battlefield using quantified SWOT analytical method. Proceedings of the International Symposium ISAHP.
    Kangas J, Pesonen M, Kurttila M, et al. 2001. A WOT: Integrating the AHP with SWOT Analysis. 6th ISAHP 2001 Proceedings, Berne, Switzerland, 2-4: 189-198.
    Kangas J, Kurttila M, Kajanus M, et al. 2003. Evaluating the management strategies of a forestland estate the S-O-S approach. Journal of Environmental Management, 69(4): 349−358. DOI: 10.1016/j.jenvman.2003.09.010.
    Kardan MH, Dehghani M, Rahimzadeh KZ, et al. 2017. Efficiency assessment of AHP and fuzzy logic methods in suitability mapping for artificial recharging (Case study: Sarbisheh basin, Southern Khorasan, Iran). Water Harvesting Research, 2(1): 57−67.
    Kazemi H, Tahmasbi Z, Kamkar B, et al. 2016. Determination of suitable cropping pattern for Golestan province by geographical information system (GIS). Watershed Management Research (Pajouhesh & Sazandegi), 110: 88-106. (In Persian)
    Klein WA, Manda AK. 2019. Analytic hierarchy process to weigh groundwater management criteria in coastal regions. Coastal Zone Management, 411−429.
    Krishnamurthy J, Mani A, Jayaraman V, et al. 2000. Groundwater resources development in hard rock terrain an approach using remote sensing and GIS techniques. International Journal of Applied Earth Observation and Geo information, 2(3-4): 204−215. DOI: 10.1016/S0303-2434(00)85015-1.
    Kurttila M, Pesonen M, Kangas J, et al. 2000. Utilizing the analytic hierarchy process (AHP) in SWOT analysis a hybrid method and its application to a forest certification case. Forest Policy and Economics, 1: 41−52. DOI: 10.1016/S1389-9341(99)00004-0.
    Likert R. 1932. A technique for the measurement of attitudes. Archives of Scientific Psychology, 410: 1−55.
    Malczewski J. 2006. GIS-based multi-criteria decision analysis: A survey of the literature. International Journal of Geographical Information Science, 20(7): 703−726. DOI: 10.1080/13658810600661508.
    Malgorzata JK. 2016. SWOT analysis for planned maintenance strategy a case study. IFAC-Papers Online, 49(12): 674−679. DOI: 10.1016/j.ifacol.2016.07.788.
    Martinez CI, Pina WHA. 2015. Recycling in Bogotá: A SWOT analysis of three associations to evaluate the integrating the informal sector into solid waste management. International Journal of Social, Behavioral, Educational, Economic and Management Engineering, 9(6): 1668-1673.
    Masozera MK, Alavalapati JRR, Jacobson SK, et al. 2006. Assessing the suitability of community-based management for the Nyungwe Forest Reserve, Rwanda. Forest Policy and Economics, 8: 206−216. DOI: 10.1016/j.forpol.2004.08.001.
    Michailidis A, Papadaki-Klavdianou A, Apostolidou I, et al. 2015. Exploring treated wastewater issues related to agriculture in Europe, employing a quantitative SWOT analysis. Procedia Economics and Finance, 33(15): 367−375. DOI: 10.1016/S2212-5671(15)01721-9.
    Mousavizadeh SR, Khorrami S. Bahreman M. 2015. Presenting a strategic plan of integrated water resources management by using SWOT in Bushehr Province. International Journal of Operations and Logistics Management, 4(1): 27-42.
    Oswald M. 2004. Implementation of the analytical hierarchy process with VBA in ArcGIS. Computers and Geosciences, 30: 637−646. DOI: 10.1016/j.cageo.2004.03.010.
    Pal MR, Karnam V. 2019. Irrigation management strategies in wheat for efficient water use in the regions of depleting water resources. Agriculture Water Management, 214: 38−46. DOI: 10.1016/j.agwat.2019.01.001.
    Petousi I, Fountoulakis M, Papadaki A, et al. 2017. Assessment of water management measures through SWOT analysis: The case of Crete Island, Greece. International Journal of Environmental Science, 2: 2367-8941.
    Pourfallah S, Ekhtesasi MR, Malekinezhad H, et al. 2019. Determination of the most appropriate management strategy in balancing the aquifer of the Abarkuh Plain using the Analytic Hierarchy Process. Watershed Management Research, 32(4): 34−50.
    Rahmatipour A, Marofi S. 2017. Planning and prioritizing sustainable development strategy for the water resource of Sanghar plain using SWOT model and QSPM matrix. Journal of Irrigation and Water engineering, 1(29): 169-185. (In Persian)
    Ramanathan R. 2004. Multicriteria analysis of energy. Encyclopedia of Energy, 77-88.
    Saaty TL. 1980. The Analytical Hierarchy Process: Planning, Priority setting, Resource Allocation. McGraw Hill, New York.
    Saaty TL. 1990. How to make a decision: The hierarchy process. European Journal of Operational Research, 48: 9−26. DOI: 10.1016/0377-2217(90)90057-I.
    Saaty TL. 1994. Fundamentals of decision making and priority theory with the analytic hierarchy process. RWS Publications, Pittsburgh.
    Saaty T. 1994. Highlights and critical points in the theory and application of the Analytic Hierarchy Process. European Journal of Operational Research, 74(3): 426−447. DOI: 10.1016/0377-2217(94)90222-4.
    Saaty TL. 2002. Decision-making with the AHP: Why is the principal eigenvector necessary? European Journal of Operational Research, 145: 85-91.
    Saaty TL. 2008. Decision making with the analytic hierarchy process. International Journal Service Science, 1(1): 83−98. DOI: 10.1504/IJSSCI.2008.017590.
    Saaty TL, Vargas LG. 1991. Prediction projection and forecasting. New York: Springer Science Business Media, 1-26.
    Saaty TL, Vargas LG. 2006. Decision Making with the Analytic Network Process: Economic, political, Social and Technological Applications with Benefits, Opportunities, Costs and Risks. Kluwer Academic Publisher, Dordrecht.
    Singh SP, Singh P. 2018. An integrated AFS-based SWOT analysis approach for evaluation of strategies under MCDM environment. Journal of Operations and Strategic Planning, 1(2): 1−19.
    Sumiarsih NM, Legono D, Kodoatie RJ. 2018. Strategic sustainable management for water transmission system: A SWOT-QSPM analysis. Journal of the Civil Engineering Forum.
    The Department of Environment and Conservation (NSW). 2007. Guidelines for the assessment and management of groundwater contamination. Published by: Department of Environment and Conservation NSW.
  • 2305-7068/© Journal of Groundwater Science and Engineering Editorial Office. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)

  • Relative Articles

    [1] Hanane Mebarki, Noureddine Maref, Mohammed El-Amine Dris, 2024: Modelling the monthly hydrological balance using Soil and Water Assessment Tool (SWAT) model: A case study of the Wadi Mina upstream watershed, Journal of Groundwater Science and Engineering, 12, 161-177.  doi: 10.26599/JGSE.2024.9280013
    [2] Edmealem Temesgen, Demelash Wendmagegnehu Goshime, Destaw Akili, 2023: Determination of groundwater potential distribution in Kulfo-Hare watershed through integration of GIS, remote sensing, and AHP in Southern Ethiopia, Journal of Groundwater Science and Engineering, 11, 249-262.  doi: 10.26599/JGSE.2023.9280021
    [3] Chun-lei Liu, Chen-ming Lu, Ya-song Li, Qi-chen Hao, Sheng-wei Cao, 2022: Genetic model and exploration target area of geothermal resources in Hongtang Area, Xiamen, China, Journal of Groundwater Science and Engineering, 10, 128-137.  doi: 10.19637/j.cnki.2305-7068.2022.02.003
    [4] Wondmagegn Taye Abebe, 2022: Evaluation of groundwater resource potential by using water balance model: A case of Upper Gilgel Gibe Watershed, Ethiopia, Journal of Groundwater Science and Engineering, 10, 209-222.  doi: 10.19637/j.cnki.2305-7068.2022.03.001
    [5] Hao ZHOU, Yong WU, Feng HUANG, Xue-fang TANG, 2021: Experimental simulation and dynamic model analysis of Cadmium (Cd) release in soil affected by rainfall leaching in a coal-mining area, Journal of Groundwater Science and Engineering, 9, 65-72.  doi: 10.19637/j.cnki.2305-7068.2021.01.006
    [6] Habtamu Semunigus Demisse, Abebe Temesgen Ayalew, Melkamu Teshome Ayana, Tarun Kumar Lohani, 2021: Extenuating the parameters using HEC-HMS hydrological model for ungauged catchment in the central Omo-Gibe Basin of Ethiopia, Journal of Groundwater Science and Engineering, 9, 317-325.  doi: 10.19637/j.cnki.2305-7068.2021.04.005
    [7] Kessar Cherif, Benkesmia Yamina, Blissag Bilal, Wahib Kébir Lahsen, 2021: Delineation of groundwater potential zones in Wadi Saida Watershed of NW-Algeria using remote sensing, geographic information system-based AHP techniques and geostatistical analysis, Journal of Groundwater Science and Engineering, 9, 45-64.  doi: 10.19637/j.cnki.2305-7068.2021.01.005
    [8] Chun-lei GUI, Zhen-xing WANG, Rong MA, Xue-feng ZUO, 2021: Aquifer hydraulic conductivity prediction via coupling model of MCMC-ANN, Journal of Groundwater Science and Engineering, 9, 1-11.  doi: 10.19637/j.cnki.2305-7068.2021.01.001
    [9] Mehmood Qaisar, Arshad Muhammad, Rizwan Muhammad, Hamid Shanawar, Mehmood Waqas, Ansir Muneer Muhammad, Irfan Muhammad, Anjum Lubna, 2020: Integration of geoelectric and hydrochemical approaches for delineation of groundwater potential zones in alluvial aquifer, Journal of Groundwater Science and Engineering, 8, 366-380.  doi: 10.19637/j.cnki.2305-7068.2020.04.007
    [10] Yacob T Tesfaldet, Avirut Puttiwongrak, Tanwa Arpornthip, 2020: Spatial and temporal variation of groundwater recharge in shallow aquifer in the Thepkasattri of Phuket, Thailand, Journal of Groundwater Science and Engineering, 8, 10-19.  doi: 10.19637/j.cnki.2305-7068.2020.01.002
    [11] ZHAO Yue-wen, WANG Xiu-yan, LIU Chang-li, LI Bing-yan, 2020: Finite-difference model of land subsidence caused by cluster loads in Zhengzhou, China, Journal of Groundwater Science and Engineering, 8, 43-56.  doi: 10.19637/j.cnki.2305-7068.2020.01.005
    [12] Muhammad Juandi, 2020: Water sustainability model for estimation of groundwater availability in Kemuning district, Riau-Indonesia, Journal of Groundwater Science and Engineering, 8, 20-29.  doi: 10.19637/j.cnki.2305-7068.2020.01.003
    [13] SOSI Benjamin, BARONGO Justus, GETABU Albert, MAOBE Samson, 2019: Electrical-hydraulic conductivity model for a weathered-fractured aquifer system of Olbanita, Lower Baringo Basin, Kenya Rift, Journal of Groundwater Science and Engineering, 7, 360-372.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.007
    [14] ZHU Yu-chen, ZHANG Yi-long, HAO Qi-chen, 2017: Assessment of shallow groundwater vulnerability in Dahei River Plain based on AHP and DRASTIC, Journal of Groundwater Science and Engineering, 5, 266-277.
    [15] WANG Ji-ning, MENG Yong-hui, 2016: Characteristics analysis and model prediction of sea-salt water intrusion in lower reaches of the Weihe River, Shandong Province, China, Journal of Groundwater Science and Engineering, 4, 149-156.
    [16] ZHANG Xiang-yang, CHEN Zong-yu, YANG Guo-min, TU Le-yi, HU Shui-ming, 2016: Krypton-85 dating of shallow aquifer in Hebei Plain, Journal of Groundwater Science and Engineering, 4, 328-332.
    [17] YI Qing, GE Li-qiang, CHENG Yan-pei, DONG Hua, LIU Kun, ZHANG Jian-kang, YUE Chen, 2015: Compilation of Groundwater Quality Map and study of hydrogeochemical characteristics of groundwater in Asia, Journal of Groundwater Science and Engineering, 3, 176-185.
    [18] LU Chuan, LI Long, LIU Yan-guang, WANG Gui-ling, 2014: Capillary Pressure and Relative Permeability Model Uncertainties in Simulations of Geological CO2 Sequestration, Journal of Groundwater Science and Engineering, 2, 1-17.
    [19] GAO Zong-jun, ZHU Zhen-hui, LIU Xiao-di, XU Yan-lan, 2014: The Formation and Model of High Fluoride Groundwater and In-situ Dispelling Fluoride Assumption in Gaomi City of Shandong Province, Journal of Groundwater Science and Engineering, 2, 34-39.
    [20] MA Shao-bing, ZHOU Jun, LIANG Peng, SU Yao-ming, 2014: Characteristics-based classification research on typical petroleum contaminants of groundwater, Journal of Groundwater Science and Engineering, 2, 41-47.
  • 加载中

Catalog

    Figures(2)  / Tables(11)

    Article Metrics

    Article views (759) PDF downloads(103) Cited by()
    Proportional views
    Related

    JGSE-ScholarOne Manuscript Launched on June 1, 2024.

    Online Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return