• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ EBSCO Scopus GeoRef AJ CNKI
Advanced Search
Volume 11 Issue 2
Jun.  2023
Turn off MathJax
Article Contents
Malik YAAA, Mohammad OAA. 2023. Experimental investigation of the impact of water depth, inlet water temperature, and fins on the productivity of a Pyramid Solar Still. Journal of Groundwater Science and Engineering, 11(2): 183-190 doi:  10.26599/JGSE.2023.9280016
Citation: Malik YAAA, Mohammad OAA. 2023. Experimental investigation of the impact of water depth, inlet water temperature, and fins on the productivity of a Pyramid Solar Still. Journal of Groundwater Science and Engineering, 11(2): 183-190 doi:  10.26599/JGSE.2023.9280016

Experimental investigation of the impact of water depth, inlet water temperature, and fins on the productivity of a Pyramid Solar Still

doi: 10.26599/JGSE.2023.9280016
More Information
  • Corresponding author: alabdullhm@gmail.com
  • Received Date: 2022-06-15
  • Accepted Date: 2023-04-03
  • Available Online: 2023-06-15
  • Publish Date: 2023-06-30
  • This experimental study aimed to investigate the impact of water depth, inlet water temperature, and fins on the productivity of a pyramid solar still in producing distilled water. The experiment was conducted in three parts, where the first part explored the variation in water depth from 1 cm to 5 cm, the second part evaluated the effect of increasing inlet water temperature from 30°C to 50°C, and the third part added fins at the bottom of the still at a specific inlet water depth. Results showed that basin depth had a significant impact on the still’s production, with a maximum variation of 40.6% observed when the water level was changed from 1 cm to 5 cm. The daily freshwater production from the pyramid solar still ranged from 3.41 kg/m2 for a water depth of 1 cm to 2.02 kg/m2 for a depth of 5 cm. Adding fins at the bottom of the pyramid solar still led to a 7.5% increase in productivity, while adjusting the inlet water temperature from 30°C to 40°C and 50°C resulted in a 15.3% and 21.2% increase, respectively. These findings highlighted the essential factors that can influence the productivity of pyramid solar stills and can be valuable in designing and operating efficient water desalination and purification technologies.
  • 加载中
  • Abdallah S, Abu-Khader MM, Badran O. 2009. Effect of various absorbing materials on the thermal performance of solar stills. Desalination, 242(1-3): 128−137. DOI: 10.1016/j.desal.2008.03.036.
    Agrawal A, Rana RS, Srivastava PK. 2017. Heat transfer coefficients and productivity of a single slope single basin solar still in Indian climatic condition: Experimental and theoretical comparison. Resource-Efficient Technologies, 3(4): 466−482. DOI: 10.1016/j.reffit.2017.05.003.
    Ahmed ZAG. 2012. Enhancing the solar still using immersion type water heater productivity and the effect of external cooling fan in winter. Applied Solar Energy, 48(3): 193−200. DOI: 10.3103/S0003701X12030048.
    Arunkumar T, Vinothkumar K, Ahsan A, et al. 2012. Experimental study on various solar still designs. ISRN Renewable Energy.
    Aybar HS. 2007. A review of desalination by solar still. Solar desalination for the 21st century. Springer, Dordrecht: 2007.207−214. DOI: 10.1007/978-1-4020-5508-9_15.
    Badran AA, Al-Hallaq IA, Salman IAE, et al. 2005. A solar still augmented with a flat-plate collector. Desalination, 172(3): 227−234. DOI: 10.1016/j.desal.2004.06.203.
    Badran OO, Al-Tahaineh HA. 2005. The effect of coupling a flat-plate collector on the solar still productivity. Desalination, 183(1-3): 137−142. DOI: 10.1016/j.desal.2005.02.046.
    Human Development Report. 2016. Human Development Report Human Development for Everyone. 2016.
    Jani HK, Modi KV. 2019. Experimental performance evaluation of single basin dual slope solar still with circular and square cross-sectional hollow fins. Solar Energy, 179: 186−194. DOI: 10.1016/j.solener.2018.12.054.
    Kabeel AE, Sharshir SW, Abdelaziz GB, et al. 2019. Improving performance of tubular solar still by controlling the water depth and cover cooling. Journal of Cleaner Production.
    Kabeel AE, El-Samadony YAF, Wael M, et al. 2018. Comparative study on the solar still performance utilizing different PCM. Desalination, 432: 89−96. DOI: 10.1016/j.desal.2018.01.016.
    Khechekhouche A, Benhaoua B, Manokar M, et al. 2019. Sand dunes effect on the productivity of a single slope solar distiller. Heat and Mass Transfer, 1-10.
    Kulandaivel KM, Karuppiah S. 2014. Single basin double slope solar still-year round performance prediction for local climatic conditions at southern India. Thermal Science, 18(2): 429−438.
    Manokar AM, Taamneh Y, Kabeel AE, et al. 2019. Effect of water depth and insulation on the productivity of an acrylic pyramid solar still – An experimental study. Groundwater for Sustainable Development, 100319.
    Nayi KH, Modi KV. 2018. Pyramid solar still: A comprehensive review. Renewable and Sustainable Energy Reviews, 81: 136−148. DOI: 10.1016/j.rser.2017.07.004.
    Phadatare MK, Verma SK. 2007. Influence of water depth on internal heat and mass transfer in a plastic solar still. Desalination, 217(1-3): 267−275. DOI: 10.1016/j.desal.2007.03.006.
    Rajamanickam MR, Ragupathy A. 2012. Influence of water depth on internal heat and mass transfer in a double slope solar still. Energy Procedia, 14: 1701−1708. DOI: 10.1016/j.egypro.2011.12.1155.
    Rubio-Cerda E, Porta-Gándara MA, Fetnandez-Zayas JL, et al. 2002. Thermal performance of the condensing covers in a triangular solar still. Renewable Energy, 27(2): 301−308. DOI: 10.1016/S0960-1481(01)00196-3.
    Taamneh Y, Taamneh MM. 2012. Performance of pyramid-shaped solar still: Experimental study. Desalination: 65−68. DOI: 10.1016/j.desal.2012.01.026.
    Taamneh YM, Allah MAA. 2020. Experimental study on pyramid solar still utilizing different types of nano-particles. Desalination and Water Treatment, 198: 31−40. DOI: 10.5004/dwt.2020.26013.
    Voropoulos K, Mathioulakis E, Belessiotis V. 2003. Experimental investigation of the behavior of a solar still coupled with hot water storage tank. Desalination, 156(1-3): 315−322. DOI: 10.1016/S0011-9164(03)00362-X.
    Voropoulos K, Mathioulakis E, Belessiotis V. 2001. Experimental investigation of a solar still coupled with solar collectors. Desalination, 138(1-3): 103−110. DOI: 10.1016/S0011-9164(01)00251-X.
    Velmurugana V, Deenadayalan CK, Vinod H, et al. 2008. Desalination of effluent using fin type solar still. Energy, 33(11): 1719−1727. DOI: 10.1016/j.energy.2008.07.001.
    Velmurugan V, Gopalakrishnan M, Raghu R, et al. 2008. Single basin solar still with fin for enhancing productivity. Energy Conversion and Management, 49(10): 2602−2608. DOI: 10.1016/j.enconman.2008.05.010.
  • 2305-7068/© Journal of Groundwater Science and Engineering Editorial Office. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)

  • Relative Articles

    [1] Mei-hui Zhang, Shi-yang Zhou, Dan-dan Liu, Ying Zhang, Yu-xi Zhang, Xi Chen, Hui-wei Wang, Bei Li, Wei Kang, Bing Yi, Wan-peng Shi, 2024: Characteristics and genesis of groundwater salinization in coastal areas of the Lower Reaches of Oujiang Basin, Journal of Groundwater Science and Engineering, 12, 190-204.  doi: 10.26599/JGSE.2024.9280015
    [2] Ya-wei Zhang, Yun-tao Liu, Zi-wen Wang, Yu Cao, Xiao-ran Tu, Di Cao, Shuai Yuan, Xiao-man Cheng, Lian-sheng Zhang, 2023: Source analysis of dissolved heavy metals in the Shaying River Basin, China, Journal of Groundwater Science and Engineering, 11, 408-421.  doi: 10.26599/JGSE.2023.9280032
    [3] Muhammad Irfan, Sri Safrina, Erry Koriyanti, Netty Kurniawati, Khairul Saleh, Iskhaq Iskandar, 2023: Effects of climate anomaly on rainfall, groundwater depth, and soil moisture on peatlands in South Sumatra, Indonesia, Journal of Groundwater Science and Engineering, 11, 81-88.  doi: 10.26599/JGSE.2023.9280008
    [4] Vinay Kumar Gautam, Mahesh Kothari, P.K. Singh, S.R. Bhakar, K.K. Yadav, 2022: Analysis of groundwater level trend in Jakham River Basin of Southern Rajasthan, Journal of Groundwater Science and Engineering, 10, 1-9.  doi: 10.19637/j.cnki.2305-7068.2022.01.001
    [5] Liang Zhu, Jing-tao Liu, Ming-nan Yang, Yu-xi Zhang, De-ping Wen, 2021: Evolutionary trend of water cycle in Beichuan River Basin of China under the influence of vegetation restoration, Journal of Groundwater Science and Engineering, 9, 202-211.  doi: 10.19637/j.cnki.2305-7068.2021.03.003
    [6] Xue-ya Dang, Na Lu, Xiao-fan Gu, Xiao-mei Jin, 2021: The relationship between groundwater and natural vegetation in Qaidam Basin, Journal of Groundwater Science and Engineering, 9, 341-349.  doi: 10.19637/j.cnki.2305-7068.2021.04.007
    [7] Yue-nan Li, Yan-sheng Gu, Man-zhou Li, Guang-jie Huo, Xi-ping Wang, Zhi-jie Xu, Jie Yue, Dan Du, Man-ge Geng, 2021: Comparison on the phytoextraction efficiency of Bidens pilosa at heavy metal contaminated site in natural and electrokinetic conditions, Journal of Groundwater Science and Engineering, 9, 121-128.  doi: 10.19637/j.cnki.2305-7068.2021.02.004
    [8] Abdelhakim LAHJOUJ, Abdellah EL HMAIDI, Karima BOUHAFA, 2020: Spatial and statistical assessment of nitrate contamination in groundwater: Case of Sais Basin, Morocco, Journal of Groundwater Science and Engineering, 8, 143-157.  doi: 10.19637/j.cnki.2305-7068.2020.02.006
    [9] XU Jun-xiang, WANG Shao-juan, LI Chang-suo, XING Li-ting, 2019: Numerical analysis and evaluation of groundwater recession in a flood detention basin, Journal of Groundwater Science and Engineering, 7, 253-263.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.006
    [10] LI Bo, LI Xue-mei, 2018: Characteristics of karst groundwater system in the northern basin of Laiyuan Spring area, Journal of Groundwater Science and Engineering, 6, 261-269.  doi: 10.19637/j.cnki.2305-7068.2018.04.002
    [11] LI Lu-lu, SU Chen, HAO Qi-chen, SHAO Jing-li, 2018: Numerical simulation of response of groundwater flow system in inland basin to density changes, Journal of Groundwater Science and Engineering, 6, 7-17.  doi: 10.19637/j.cnki.2305-7068.2018.01.002
    [12] GAN Hao-nan, LIN Wen-jing, YUE Gao-fan, WANG Xiao, MA Feng, WANG Gui-ling, 2017: Research on the fault controlling mechanism of geothermal water in Zhangzhou Basin, Journal of Groundwater Science and Engineering, 5, 326-335.
    [13] TAO Hong, ZHENG Miao-miao, FAN Li-min, LI Wen-li, DING Jia, LI Hui, HE Xu-bo, TAO Fu-ping, 2017: Research on quality changes and influencing factors of groundwater in the Guanzhong Basin, Journal of Groundwater Science and Engineering, 5, 296-302.
    [14] CHENG Xu-xue, JIN Xiao-lin, LIU Wei-po, 2017: Study on functions and rational allocation of Shule River Basin groundwater resources, Journal of Groundwater Science and Engineering, 5, 140-151.
    [15] ZHANG Chun-chao, LI Xiang-quan, GAO Ming, HOU Xin-wei, LIU Ling-xia, WANG Zhen-xing, MA Jian-fei, 2017: Exploitation of groundwater resources and protection of wetland in the Yuqia Basin, Journal of Groundwater Science and Engineering, 5, 222-234.
    [16] HOU Guang-cai, YIN Li-he, XU Dan-dan, 2017: Hydrogeology of the Ordos Basin, China, Journal of Groundwater Science and Engineering, 5, 104-115.
    [17] ZHANG Chun-chao, WANG Wen-Ke, SUN Yi-bo, LI Xiang-quan,HOU Xin-wei, 2015: Processes of hydrogeochemical evolution of groundwater in the Guanzhong Basin, China, Journal of Groundwater Science and Engineering, 3, 136-146.
    [18] JIA Rui-liang, ZHOU Jin-long, LI Qiao, LI Yang, 2015: Analysis of evaporation of high-salinity phreatic water at a burial depth of 0 m in an arid area, Journal of Groundwater Science and Engineering, 3, 1-8.
    [19] SU Chen, XU Cheng-yun, CHEN Zong-yu, WEI wen, 2014: Comparison of hydrogeological characteristics between the Sanjiang Plain and the Amur River Basin, Journal of Groundwater Science and Engineering, 2, 26-34.
    [20] B.T. Hiller, N. Jadamba, 2013: Groundwater Use in the Selenge River Basin, Mongolia, Journal of Groundwater Science and Engineering, 1, 11-32.
  • 加载中

Catalog

    Figures(9)

    Article Metrics

    Article views (517) PDF downloads(36) Cited by()
    Proportional views
    Related

    JGSE-ScholarOne Manuscript Launched on June 1, 2024.

    Online Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return