Citation: | Zhuo ZJ, Lv DY, Meng SR, et al. 2023. Factors driving surface deformations in plain area of eastern Zhengzhou City, China. Journal of Groundwater Science and Engineering, 11(4): 347-364 doi: 10.26599/JGSE.2023.9280028 |
Chen BB, Gong LH, Chen Y, et al. 2020. Land subsidence and its relation with groundwater aquifers in Beijing Plain of China. The Science of the Total Environment, 735: 139111. DOI: 10.1016/j.scitotenv.2020.139111.
|
Chen M, Tomas R, Li ZH, et al. 2016. Imaging land subsidence induced by groundwater extraction in Beijing (China) using satellite radar interferometry. Remote Sensing, 8(6): 468. DOI: 10.3390/rs8060468.
|
Cheng R, Zhu L, Zhou JH, et al. 2021. Spatio-Temporal heterogeneity and driving factors of land subsidence in middle lower part of Chaobai River alluvial fan. Journal of Jilin University (Earth Science Edition), 51(4): 1182−1192. (in Chinese) DOI: 10.13278/j.cnkijjuese.20200047.
|
Chen Y, Chen S, Li J, et al. High precision extraction of surface deformation information based on principal component spatiotemporal analysis and time-series InSAR: Taking Xuzhou as an Example. Journal of Geo-information Science, 1−16. (in Chinese)
|
Ciampalini A, Raspini F, Solari L, et al. 2016. PSInSAR analysis in the Pisa Urban Area (Italy): A case study of subsidence related to stratigraphical factors and urbanization. Remote Sensing, 8(6): 120. DOI: 10.3390/rs802012.
|
Dong SC, Samsonov S, Yin HW, et al. 2018. Two-dimensional ground deformation monitoring in Shanghai based on SBAS and MSBAS InSAR methods. Journal of Earth Science, 29(4): 960−968. DOI: 10.1007/s12583-017-0955-x.
|
Ferretti A, Prati C, Rocca F, et al. 2000. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 38(5): 2202−2212. DOI: 10.1109/36.868878.
|
Ferretti A, Prati C, Rocca F, et al. 2001. Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1): 8−20. DOI: 10.1109/36.898661.
|
Guo HP, Bai JB, Zhang YQ, et al. 2017. The evolution characteristics and mechanism of the land subsidence in typical areas of the North China Plain. Geology in China, 44(6): 1115−1127. (in Chinese) DOI: 10.12029/gc20170606.
|
Guan L, Tang W, Dai HY, et al. Monitoring ground subsidence in Zhengzhou City based on SBAS-InSAR technology. Beijing Surveying and Mapping, 33(4): 462-467. (in Chinese)
|
Guo XH, Li JX. 2007. The necessity of land subsidence monitoring in Zhengzhou City. The Chinese Journal of Geolocical Hazard and Control, 18(1): 147−148. (in Chinese) DOI: 10.16031/.cnki.issn.1003-8035.2007.01.035.
|
Jia SM, Wang HG, Zhao SS, et al. 2007. A tentative study of the mechanism of land subsidence in Beijing. City Geology, 2(1): 20−26. (in Chinese) DOI: 10.3969/j.issn.1007-1903.2007.01.005.
|
Lei KC, Luo Y, Chen BB, et al. 2016. Distribution characteristics and influence factors of land subsidence in Beijing area. Geology in China, 43(6): 2216−2228. (in Chinese) DOI: 10.12029/gc20160628.
|
Lei KC, Ma FS, Luo Y, et al. 2022. Main subsidence layers and deformation characteristics in Being Plain at present in. Journal of Engineering Geology, 30(2): 442−458. (in Chinese) DOI: 10.13544/i.cnki.jeg.2021-0238.
|
Li GE, Zhou YH. 2017. Study on fusion methods of InSAR, Leveling and GPS data. Bulletin of Surveying and Mapping, 486(9): 78−82. (in Chinese) DOI: 10.13474/j.cnki.11-2246.2017.0292.
|
Li HH, Hou ZD, Li SJ, et al. 2022. Analysis of characteristics and causes of land subsidence in Changzhou by time series InSAR. Journal of Geodesy and Geodynamics, 42(1): 54−58. DOI: 10.14075/j.jgg.2022.01.011.
|
Li HJ, Zhang YW, Yang YQ, et al. 2018. Spatial-emporal distribution characteristics and causation analysis of land subsidence in three northern counties area of Langfang I. Science Technology and Engineering, 18(11): 23−30. (in Chinese) DOI: 10.3969/j.issn.1671-1815.2018.11.003.
|
Liu HW, Du D, Xu JB, et al. 2018. Characteristics and affecting factors of land subsidence identification based on PSInSAR measures in Shandong Peninsula Blue-Yellowy Overlapping Economic Zone. Geology in China, 45(6): 1116−1127. (in Chinese) DOI: 10.12029/gc20180603.
|
Liu P, Li Q, Li Z, et al. 2016. Anatomy of subsidence in Tianjin from time series InSAR. Remote Sensing, 8(3): 266. DOI: 10.3390/rs8030266.
|
Liu YY, Yan X, Liu B, et al. 2022. Characterizing spatiotemporal patterns of land subsidence after the South-to-North Water Diversion Project based on Sentinel-1 InSAR observations in the Eastern Beijing Plain. Remote Sensing, 14(5810): 5810. DOI: 10.3390/rs14225810.
|
Motagh M, Shamshiri R, Haghighi HM, et al. 2017. Quantifying groundwater exploitation induced subsidence in the Rafsanjan Plain, southeastern Iran, using InSAR time-series and in situ measurements. Engineering Geology, 218: 134−151. DOI: 10.1016/j.enggeo.2017.01.011.
|
Pan D, Wang JH, Wang BC, et al. 2020. Subsidence in Zhengzhou City study on distribution characteristics and mechanism of land. Journal of Shandong Agricultural University (Natural Science Edition), 51(4): 660−662. (in Chinese) DOI: 10.3969/iissn.1000-2324.2020.04.015.
|
Peng JN. 2008. Research on GIS spatial analysis method. M. S. thesis. Ji Lin: Jilin University .
|
Qu FF, Zhang Q, Lu Z, et al. 2014. Land subsidence and ground fissures in Xi'an, China 2005–2012 revealed by multi-band InSAR time-series analysis. Remote Sensing of Environment, 155: 366−376. DOI: 10.1016/j.rse.2014.09.008.
|
Shi YS, Shi DH, Cao XY, et al. 2018. Impacting factors and temporal and spatial differentiation of land subsidence in Shanghai. Sustainability, 10(9): 3146. DOI: 10.3390/su10093146.
|
Tomás R, Herrera G. 2010. A ground subsidence study based on DInSAR data: Calibration of soil parameters and subsidence prediction in Murcia City (Spain). Engineering Geology, 111(1): 19−30. DOI: 10.1016/j.enggeo.2009.11.004.
|
Wang C, Wang YB, Zhou CD, et al. 2018. The influence of urban expansion of Tongzhou on land subsidence. Journal of Capital Normal University (Natural Science Edition), 39(4): 68−74. (in Chinese) DOI: 10.19789/j.1004-9398.2018.04.013.
|
Wang JF, Xu CD. 2017. Geodetector: Principle and prospective. Acta Geographica Sinica, 72(1): 116−134. (in Chinese) DOI: 10.11821/d1xb201701010.
|
Xu CJ, Zhang CY. 2009. Crustal deformation measurement and data processing. Wuhan: Wuhan University Press. (in Chinese)
|
Yang HF, Meng RF, Bao XL, et al. 2022. Assessment of water level threshold for groundwater restoration and over-exploitation remediation the Beijing-Tianjin-Hebei Plain. Journal of Groundwater Science and Engineering, 10(2): 113−127. DOI: 10.19637/j.cnki.2305-7068.2022.02.002.
|
Yang J, Huang X. 2021. The 30 m annual land cover and its dynamics in China from 1990 to 2019. Earth System Science Data Discussions, 13(8): 3907−3925. DOI: 10.5194/essd-13-3907-2021.
|
Ye YC. 2021. Temporal and spatial characteristics analysis and prediction of ground subsidence along Zhengzhou Metro based on time series InSAR. M. S. thesis. Zheng Zhou: Zhengzhou University: 2216−2228. (in Chinese) DOI: 10.27466/d.cnki.gzzdu.2021.005288.
|
Yu HR, Gong HL, Chen BB, et al. The advance and consideration of land subsidence in Beijing-Tianjin-Hebei region. Science of Surveying and Mapping, 45(4): 125-133. (in Chinese)
|
Zhang Y, Liu YF, Liu Y, et al. 2022. Spatia-Temproal variation characteristics and geographic detection mechanism of land subsidence in Wuhan City from 2007 to 2019. Geomatics and Information Science of Wuhan University, 47(9): 1486−1497. (in Chinese) DOI: 10.13203/j.whugis20210143.
|
Zhao YW, Wang XY, Liu CL. et al. 2020. Finite-difference model of land subsidence caused by cluster loads in Zhengzhou, China. Journal of Groundwater Science and Engineering, 8(1): 43−56. DOI: 10.19637/j.cnki.2305-7068.2020.01.005.
|
Zhou CD, Gong HL, Zhang YQ, et al. 2018. Spatiotemporal evolution of land subsidence in the Beijing Plain 2003–2015 using Persistent Scatterer Interferometry (PSI) with Multi-Source SAR data. Remote Sensing, 10(4): 552. DOI: 10.3390/rs10040552.
|
Zhou CF, Gong HL, Chen BB, et al. 2019. Quantifying the contribution of multiple factors to land subsidence in the Beijing Plain, China with machine learning technology. Geomorphology, 335: 48−61. DOI: 10.1016/j.geomorph.2019.03.017.
|
2305-7068/© Journal of Groundwater Science and Engineering Editorial Office. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)
[1] | Tian-lun Zhai, Qian-qian Zhang, Long Wang, Hui-wei Wang, 2024: Temporal and spatial variations hydrochemical components and driving factors in Baiyangdian Lake in the Northern Plain of China, Journal of Groundwater Science and Engineering, 12, 293-308. doi: 10.26599/JGSE.2024.9280022 |
[2] | Edmealem Temesgen, Demelash Wendmagegnehu Goshime, Destaw Akili, 2023: Determination of groundwater potential distribution in Kulfo-Hare watershed through integration of GIS, remote sensing, and AHP in Southern Ethiopia, Journal of Groundwater Science and Engineering, 11, 249-262. doi: 10.26599/JGSE.2023.9280021 |
[3] | Dun Wang, Li-xin Pei, Li-zhong Zhang, Xi-wen Li, Ze-heng Chen, Yue-hu Zhou, 2023: Water resource utilization characteristics and driving factors in the Hainan Island, Journal of Groundwater Science and Engineering, 11, 191-206. doi: 10.26599/JGSE.2023.9280017 |
[4] | Temesgen Mekuriaw Manderso, Yitbarek Andualem Mekonnen, Tadege Aragaw Worku, 2023: Application of GIS based analytical hierarchy process and multicriteria decision analysis methods to identify groundwater potential zones in Jedeb Watershed, Ethiopia, Journal of Groundwater Science and Engineering, 11, 221-236. doi: 10.26599/JGSE.2023.9280019 |
[5] | Xiu-bo Sun, Chang-lai Guo, Jing Zhang, Jia-quan Sun, Jian Cui, Mao-hua Liu, 2023: Spatial-temporal difference between nitrate in groundwater and nitrogen in soil based on geostatistical analysis, Journal of Groundwater Science and Engineering, 11, 37-46. doi: 10.26599/JGSE.2023.9280004 |
[6] | Muthamilselvan A Dr, Sekar Anamika, Ignatius Emmanuel, 2022: Identification of groundwater potential in hard rock aquifer systems using Remote Sensing, GIS and Magnetic Survey in Veppanthattai, Perambalur, Tamilnadu, Journal of Groundwater Science and Engineering, 10, 367-380. doi: 10.19637/j.cnki.2305-7068.2022.04.005 |
[7] | Wondesen Fikade Niway, Dagnachew Daniel Molla, Tarun Kumar Lohani, 2022: Holistic approach of GIS based Multi-Criteria Decision Analysis (MCDA) and WetSpass models to evaluate groundwater potential in Gelana watershed of Ethiopia, Journal of Groundwater Science and Engineering, 10, 138-152. doi: 10.19637/j.cnki.2305-7068.2022.02.004 |
[8] | Chun-lei GUI, Zhen-xing WANG, Rong MA, Xue-feng ZUO, 2021: Aquifer hydraulic conductivity prediction via coupling model of MCMC-ANN, Journal of Groundwater Science and Engineering, 9, 1-11. doi: 10.19637/j.cnki.2305-7068.2021.01.001 |
[9] | Hao ZHOU, Yong WU, Feng HUANG, Xue-fang TANG, 2021: Experimental simulation and dynamic model analysis of Cadmium (Cd) release in soil affected by rainfall leaching in a coal-mining area, Journal of Groundwater Science and Engineering, 9, 65-72. doi: 10.19637/j.cnki.2305-7068.2021.01.006 |
[10] | Abdelhakim LAHJOUJ, Abdellah EL HMAIDI, Karima BOUHAFA, 2020: Spatial and statistical assessment of nitrate contamination in groundwater: Case of Sais Basin, Morocco, Journal of Groundwater Science and Engineering, 8, 143-157. doi: 10.19637/j.cnki.2305-7068.2020.02.006 |
[11] | Yacob T Tesfaldet, Avirut Puttiwongrak, Tanwa Arpornthip, 2020: Spatial and temporal variation of groundwater recharge in shallow aquifer in the Thepkasattri of Phuket, Thailand, Journal of Groundwater Science and Engineering, 8, 10-19. doi: 10.19637/j.cnki.2305-7068.2020.01.002 |
[12] | Mehdi Bahrami, Elmira Khaksar, Elahe Khaksar, 2020: Spatial variation assessment of groundwater quality using multivariate statistical analysis(Case Study: Fasa Plain, Iran), Journal of Groundwater Science and Engineering, 8, 230-243. doi: 10.19637/j.cnki.2305-7068.2020.03.004 |
[13] | Negar Fathi, Mohammad Bagher Rahnama, Mohammad Zounemat Kermani, 2020: Spatial analysis of groundwater quality for drinking purpose in Sirjan Plain, Iran by fuzzy logic in GIS, Journal of Groundwater Science and Engineering, 8, 67-78. doi: 10.19637/j.cnki.2305-7068.2020.01.007 |
[14] | T K G P Ranasinghe, R U K Piyadasa, 2019: Visualizing the spatial water quality of Bentota, Sri Lanka in the presence of seawater intrusion, Journal of Groundwater Science and Engineering, 7, 340-353. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.005 |
[15] | Nouayti Abderrahime, Khattach Driss, Hilali Mohamed, Nouayti Nordine, 2019: Mapping potential areas for groundwater storage in the High Guir Basin (Morocco):Contribution of remote sensing and geographic information system, Journal of Groundwater Science and Engineering, 7, 309-322. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.002 |
[16] | JIANG Ti-sheng, QU Ci-xiao, WANG Ming-yu, SUN Yan-wei, HU Bo, CHU Jun-yao, 2017: Analysis on temporal and spatial variations of groundwater hydrochemical characteristics in the past decade in southern plain of Beijing, China, Journal of Groundwater Science and Engineering, 5, 235-248. |
[17] | WANG Ji-ning, MENG Yong-hui, 2016: Characteristics analysis and model prediction of sea-salt water intrusion in lower reaches of the Weihe River, Shandong Province, China, Journal of Groundwater Science and Engineering, 4, 149-156. |
[18] | GUO Li-jun, YAN Ya-ya, GUO Li-na, MA Jin-long, LV Ming-yu, 2016: GIS-based spatial and temporal changes of land occupation caused by mining activities-a study in eastern part of Hubei Province, Journal of Groundwater Science and Engineering, 4, 60-68. |
[19] | LIU Jun, CHENG Jian-mei, JIANG Fang-yuan, 2015: Methodological study of coastal geological hazard assessment based on GIS, Journal of Groundwater Science and Engineering, 3, 77-85. |
[20] | Feng-long Zhang, Fu-li Qi, Shou-cheng Lu, Yong-li Li, 2013: Analysis of the Water Factor with the Major Environmental Issues in the Sanjiang Plain, Journal of Groundwater Science and Engineering, 1, 28-32. |
JGSE-ScholarOne Manuscript Launched on June 1, 2024.