• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ Scopus GeoRef AJ CNKI
Advanced Search
Volume 11 Issue 4
Dec.  2023
Turn off MathJax
Article Contents
Zhang YW, Liu YT, Wang ZW, et al. 2023. Source analysis of dissolved heavy metals in the Shaying River Basin, China. Journal of Groundwater Science and Engineering, 11(4): 408-421 doi:  10.26599/JGSE.2023.9280032
Citation: Zhang YW, Liu YT, Wang ZW, et al. 2023. Source analysis of dissolved heavy metals in the Shaying River Basin, China. Journal of Groundwater Science and Engineering, 11(4): 408-421 doi:  10.26599/JGSE.2023.9280032

Source analysis of dissolved heavy metals in the Shaying River Basin, China

doi: 10.26599/JGSE.2023.9280032
More Information
  • Corresponding author: 274297961@qq.com
  • Received Date: 2022-10-19
  • Accepted Date: 2023-09-21
  • Available Online: 2023-12-10
  • Publish Date: 2023-12-31
  • Over the years, the Shaying River Basin has experienced frequent instances of river pollution. The presence of numerous critical pollutant discharge enterprises and sewage-treatment plants in the vicinity of the Shaying River has transformed it a major tributary with relatively serious pollution challenge within the upper reaches of Huaihe River Basin. To study the sources of manganese (Mn), chromium (Cr), nickel (Ni), arsenic (As), cadmium (Cd) and lead (Pb) in Shaying River water, 123 sets of surface water samples were collected from 41 sampling points across the entire basin during three distinct phases from 2019 to 2020, encompassing normal water period, dry season and wet season. The primary origins of heavy metals in river water were determined by analyzing the heavy metal contents in urban sewage wastewater, industrial sewage wastewater, groundwater, mine water, and the heavy metal contributions from agricultural non-point source pollution. The analytical findings reveal that Mn primarily originates from shallow groundwater used for agricultural irrigation, While Cr mainly is primarily sourced from urban sewage treatment plant effluents, coal washing wastewater, tannery wastewater, and industrial discharge related to metal processing and manufacturing. Ni is mainly contributed by urban sewage treatment plant effluents and industrial wastewater streams associated with machinery manufacturing and metal processing. Cd primarily linked to industrial wastewater, particularly from machinery manufacturing and metal processing facilities, while Pb is predominantly associated with urban sewage treatment plant effluents and wastewater generated in Pb processing and recycling wastewater. These research provides a crucial foundation for addressing the prevention and control of dissolved heavy metals at their sources in the Shaying River.
  • 加载中
  • Bao FQ, Cheng HX, Yong S, et al. 2022. Environmental geochemistry of arsenic and cadmium in cultivated land around Baotou industrial zone. Geology and resources, 31(04): 516−522+507. (in Chinese) DOI: 10.13686/j.cnki.dzyzy.2022.04.008.
    Bhardwaj R, Gupta A, Garg JK. 2017. Evaluation of heavy metal contamination using environmetrics and indexing approach for River Yamuna, Delhi stretch, India. Water Science, 31(1): 52−66. DOI: 10.1016/j.wsj.2017.02.002.
    Bhupal RG, Chandni P, Surendra B, et al. 2014. Heavy metal contamination in soil, water, fodder, paddy and some popular vegetables due to polluted Musi River irrigation around Hyderabad City in Telangana State of India. International Scientific Academy of Engineering and Technology (ISAET) Conference Proceeding. International Institute of Science Engineering and Management, International Scientific Academy of Engineering and Technology: International Scientific Academy of Engineering and Technology.
    Chen H, Zuo QT, Dou M. et al. 2014. Research progress and prospects of heavy metal pollution in river sediment. Yellow River, 36(5): 71-75. (in Chinese)
    Chen NW, Wang DL, Lu T, et al. 2018. Manganese pollution in the Jiulong River watershed: Sources and transformation. Acta Scientiae Circumstantiae, 38(08): 2955−2964. (in Chinese) DOI: 10.13671/j.hjkxxb.2018.0232.
    Christian O, Jens H, Nina Z. 2015. Heavy metal concentrations in pores and surface waters during the emptying of a small reservoir. Journal of Geoscience and Environment Protection, 3: 66-72.
    Chu JT. 2001. Effect of Shaying River flow and water quality on Huaihe River pollution. Water Resources Protection, (03): 4-7 + 59. (in Chinese)
    Dai B, Lv JS, Zhan JC. et al. 2015. Assessment of sources, spatial distribution and ecological risk of heavy metals in soils in a typical industry-based city of Shandong Province, Eastern China. Environmental Science, 36(02): 507−515. (in Chinese) DOI: 10.13227/j.hjkx.2015.02.018.
    Ding TT, Li Q, Du SL, et al. 2019. Characteristics of heavy metal pollution and ecological risk assessment in the water environment of Shaying River Basin. Environmental Chemistry, 38(10): 2386−2401. (in Chinese)
    Feng CT, Zhao AJ, Li SJ. 2012. Determination of copper, zinc, lead, and cadmium concentration in Shaying River water. Henan Chemical Industry, 29(Z2): 49−52. (in Chinese) DOI: 10.14173/j.cnki.hnhg.2012.z2.006.
    Gómez-Alvarez A, Meza-Figueroa D, Valenzuela-García JL. et al. 2014. Behavior of metals under different seasonal conditions: Effects on the quality of a Mexico-USA Border River. Water, Air, & Soil Pollution, 225: 2138−2150. DOI: 10.1007/s11270-014-2138-z.
    He WL, Gui HR, Yuan ZH, et al. 2009. Removal of lead, cadmium, iron and manganese from mine water by potassium permanganate. Industrial Water Treatment, 29(10): 83-86. (in Chinese)
    Terrazas-Salvatierra J, Munoz-Vásquez G, Romero-Jaldin A. 2020. Migration of total chromium and chloride anion in the Rocha River used for estimating degradation of agricultural soil quality at the Thiu Rancho zone. Journal of Groundwater Science and Engineering, 8(03): 223−229. DOI: 10.19637/j.cnki.2305-7068.2020.03.003.
    Li MY, Xu JR, Shi ZW. 2009. Spatiotemporal differentiation characteristics of heavy metals in Künes River in Xinjiang. Environmental Chemistry, 28(05): 716−720. (in Chinese)
    Liu T, Zhou GS, Tan KY, et al. 2016. Research progress of winter wheat irrigation system and its environmental effects in North China. Journal of Ecology, 5979−5986. (in Chinese)
    Ross CL, Sensel-Gunke K, Wilken V, et al. 2016. Heavy metal distribution in soil and crops after agricultural application of Biowaste-Based Digestates. Health and Environmental Research Online, 1405−1410.
    Sundaray SK, Nayak BB, Kanungo TK, et al. 2012. Dynamics and quantification of dissolved heavy metals in the Mahanadi river estuarine system, India. Environ Monit Assess, 184: 1157-1179.
    Varol M, Gökot B, Bekleyen A. 2013. Dissolved heavy metals in the Tigris River (Turkey): Spatial and temporal variations. Environmental Science Pollution Research, 20: 6096−6108. DOI: 10.1007/s11356-013-1627-8.
    Wang MM. 2016. Risk assessment and source apportionment of heavy metals in typical rivers of Taihu Lake Basin. Nanjing: Nanjing University. (in Chinese)
    Wang YP. 2012. Characteristics of water quality and heavy metals in Guangdong section of the Pearl River Basin. Guangzhou: South China University of Technology. (in Chinese)
    Wang Z, Liu M, Lin L, et al. 2019. Spatio-temporal distribution and pollution assessment of heavy metals in the Middle and Lower Reaches of Hanjiang River. Journal of Yangtze River Scientific Research Institute, 38(09): 40−47. (in Chinese)
    Wu L, Liu GJ, Zhou CC, et al. 2018. Temporal-spatial distribution and pollution assessment of soluble heavy metals in Chaohu Lake. Environmental Science, 39(02): 738−747. DOI: 10.13227/j.hjkx.201703099.
    Wu YY, Liu YT, Zhang D, et al. 2021. The effect of anthropogenic input on the hydrochemical composition of water bodies in the Shaying River Basin. Chinese Journal of Ecology, 40(02): 427−441. (in Chinese) DOI: 10.13292/j.1000-4890.202102.004.
    Yu Y, Lv YN, Wang WJ, et al. 2020. Spatio-Temporal distribution and risk assessment of heavy metals in Middle and Lower Reaches of Le'an River. Environmental Science, 41(02): 691−701. (in Chinese) DOI: 10.13227/j.hjkx.201905026.
    Zamora-Ledezma C,  Negrete-Bolagay D,  Figueroa F, et al.  2021. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environmental Technology & Innovation, 22.
    Zhang D, Yang JM, Huang XY, et al. 2019. Source of dissolved heavy metals in the Yiluo River Basin based on sulfur isotopes of sulfate. China Environmental Science, 39(06): 2549−2559. (in Chinese) DOI: 10.19674/j.cnki.issn1000-6923.2019.0304.
    Zhang WJ, Xin CL, Yu S, et al. 2021. Spatial-temporal distribution and pollution evaluation of dissolved heavy metals in the Liujiang River Basin. Environmental Science: 1-22. (in Chinese)
    Zhang Y, Li FD, Ouyang Z, et al. 2013. Distribution and health risk assessment of heavy metals of groundwater in the irrigation district of the Lower Reaches of Yellow River. Environmental Science, 34(01): 121−128. (in Chinese) DOI: 10.13227/j.hjkx.2013.01.028.
  • 2305-7068/© Journal of Groundwater Science and Engineering Editorial Office. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)

  • Relative Articles

    [1] Ming-nan Yang, Liang Zhu, Jing-tao Liu, Yu-xi Zhang, Bing Zhou, 2023: Influence of water conservancy project on runoff in the source region of the Yellow River and wetland changes in the Lakeside Zone, China, Journal of Groundwater Science and Engineering, 11, 333-346.  doi: 10.26599/JGSE.2023.9280027
    [2] Chun-xiao Wang, Yong Qian, Zhao-ji Zhang, Chen Yue, Chun-yan Guo, Xiang-xiang Cui, 2023: Current status and prospects of research on 1,4-dioxane pollution and treatment technologies in the water environment, Journal of Groundwater Science and Engineering, 11, 158-170.  doi: 10.26599/JGSE.2023.9280014
    [3] Shima Nasiri, Hossein Ansari, Ali Naghi Ziaei, 2022: Determination of water balance equation components in irrigated agricultural watersheds using SWAT and MODFLOW models : A case study of Samalqan plain in Iran, Journal of Groundwater Science and Engineering, 10, 44-56.  doi: 10.19637/j.cnki.2305-7068.2022.01.005
    [4] Liu YANG, Ying-ping ZHANG, Xue-ru WEN, Li-xin PEI, Bing LIU, 2020: Characteristics of groundwater and urban emergency water sources optimazation in Luoyang, China, Journal of Groundwater Science and Engineering, 8, 298-304.  doi: 10.19637/j.cnki.2305-7068.2020.03.010
    [5] SUN Bin, YU Da-lu, 2018: Study on Jinan urban construction planning based on the protection of karst landscape, Journal of Groundwater Science and Engineering, 6, 280-292.  doi: 10.19637/j.cnki.2305-7068.2018.04.004
    [6] LI Yue-peng, LIU Hai-yan, WANG Li-li, 2017: Research review on the treatment of urban landscape lakes, Journal of Groundwater Science and Engineering, 5, 152-161.
    [7] YU Kai-ning, LI Jian, LI Hui, CHEN Kang, LV Bing-xu, ZHAO Long-hui, 2016: Statistical characteristics of heavy metals content in groundwater and their interrelationships in a certain antimony mine area, Journal of Groundwater Science and Engineering, 4, 284-292.
    [8] LIU Shu-yuan, WANG Hong-qi, 2016: Dynamic assessment of pollution risk of groundwater source area in Northern China, Journal of Groundwater Science and Engineering, 4, 333-343.
    [9] CUI Zhen, YANG Po, ZHANG Zheng, 2016: Comprehensive suitability evaluation of urban geological environment in Zhengzhou-Kaifeng area, Journal of Groundwater Science and Engineering, 4, 204-212.
    [10] ZHOU Zhi-chao, WANG Ju, SU Rui, GUO Yong-hai, LI Jie-biao, JI Rui-li, ZHANG Ming, DONG Jian-nan, 2016: Study on the residence time of deep groundwater for high-level radioactive waste geological disposal, Journal of Groundwater Science and Engineering, 4, 52-59.
    [11] YANG Li-zhi, LIU Chun-hua, 2015: Study on the characteristics and causes of carbon tetrachloride pollution of karst water in eastern suburbs of Jinan, Journal of Groundwater Science and Engineering, 3, 331-341.
    [12] WANG Ye, ZHANG Qiu-lan, WANG Shi-chang, SHAO Jing-li, 2015: Forecasting of water yield of deep-buried iron mine in Yanzhou, Shandong, Journal of Groundwater Science and Engineering, 3, 342-350.
    [13] YANG Yun, WU Jian-feng, LIU De-peng, 2015: Numerical modeling of water yield of mine in Yangzhuang Iron Mine, Anhui Province of China, Journal of Groundwater Science and Engineering, 3, 352-362.
    [14] Kang-qin HAN, Ri-sheng DUAN, Liang-liang JIA, Yuan-yuan DUAN, Min-ying FENG, 2014: Analysis on Present Status of Underground Water Pollution in Shijiazhuang and Its Prevention Measures, Journal of Groundwater Science and Engineering, 2, 44-48.
    [15] LIU Chang-Rong, HUANG Shuang-Bing, ZHANG Li-Zhong, 2014: New Mine Geological Environment Impact Assessment Method, Journal of Groundwater Science and Engineering, 2, 88-96.
    [16] CHEN Feng, LI Lian-juan, ZHANG Hao, LI Yan, 2014: Evaluation on Water Burst (inrush) Risks on 15# Coal Seam Roof of Shigejie Coal Mine of Shaanxi Lu’an Group, Journal of Groundwater Science and Engineering, 2, 40-46.
    [17] Meng-jie Wu, Hui-zhen Hen, 2013: Brief Talk of Groundwater Resources in Role of Rural Drinking Water Safety and Construction of City Emergency Water Source, Journal of Groundwater Science and Engineering, 1, 40-52.
    [18] Li Manzhou, Pang Zhenlei, 2013: Water Resources Issues and Control Policy Recommendations in the Process of “Industrialization, Urbanization and Agricultural Modernization” in Henan Province, Journal of Groundwater Science and Engineering, 1, 32-40.
    [19] Do Van Binh, 2013: Source and Formation of the Arsenic in Ground Water in Hanoi , Vietnam, Journal of Groundwater Science and Engineering, 1, 102-108.
    [20] Song Bo, Liu Changli, Zhang Yun, Hou Hongbing, Pei Lixin, Yang Liu, 2013: Urban Waste Disposal and Its Impact on Groundwater Pollution in China, Journal of Groundwater Science and Engineering, 1, 88-95.
  • 加载中

Catalog

    Figures(3)  / Tables(4)

    Article Metrics

    Article views (250) PDF downloads(105) Cited by()
    Proportional views
    Related

    Welcome to Journal of Groundwater Science and  Engineering!

    Quick Submit

    Online Submission   E-mail Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return