• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ EBSCO Scopus GeoRef AJ CNKI
Advanced Search
Volume 12 Issue 2
Jun.  2024
Turn off MathJax
Article Contents
Stephen Pitchaimani V, Narayanan MSS, Abishek RS, et al. 2024. Delineation of groundwater potential zones using remote sensing and Geographic Information Systems (GIS) in Kadaladi region, Southern India. Journal of Groundwater Science and Engineering, 12(2): 147-160 doi:  10.26599/JGSE.2024.9280012
Citation: Stephen Pitchaimani V, Narayanan MSS, Abishek RS, et al. 2024. Delineation of groundwater potential zones using remote sensing and Geographic Information Systems (GIS) in Kadaladi region, Southern India. Journal of Groundwater Science and Engineering, 12(2): 147-160 doi:  10.26599/JGSE.2024.9280012

Delineation of groundwater potential zones using remote sensing and Geographic Information Systems (GIS) in Kadaladi region, Southern India

doi: 10.26599/JGSE.2024.9280012
More Information
  • Corresponding author: stephen.geo@voccollege.ac.in
  • Received Date: 2023-12-11
  • Accepted Date: 2024-04-16
  • Available Online: 2024-06-10
  • Publish Date: 2024-06-30
  • The primary objective of this research is to delineate potential groundwater recharge zones in the Kadaladi taluk of Ramanathapuram, Tamil Nadu, India, using a combination of remote sensing and Geographic Information Systems (GIS) with the Analytical Hierarchical Process (AHP). Various factors such as geology, geomorphology, soil, drainage, density, lineament density, slope, rainfall were analyzed at a specific scale. Thematic layers were evaluated for quality and relevance using Saaty's scale, and then integrated using the weighted linear combination technique. The weights assigned to each layer and features were standardized using AHP and the Eigen vector technique, resulting in the final groundwater potential zone map. The AHP method was used to normalize the scores following the assignment of weights to each criterion or factor based on Saaty's 9-point scale. Pair-wise matrix analysis was utilized to calculate the geometric mean and normalized weight for various parameters. The groundwater recharge potential zone map was created by mathematically overlaying the normalized weighted layers. Thematic layers indicating major elements influencing groundwater occurrence and recharge were derived from satellite images. Results indicate that approximately 21.8 km2 of the total area exhibits high potential for groundwater recharge. Groundwater recharge is viable in areas with moderate slopes, particularly in the central and southeastern regions.
  • 加载中
  • Abishek SR, Ravindran AA. 2023. Assessment of groundwater potential zones for urban development site suitability analysis in Srivaikundam region, Thoothukudi district, South India. Urban Climate, 49: 101443. DOI: 10.1016/j.uclim.2023.101443.
    Alharbi T, Abdelrahman K, El-Sorogy AS, et al. 2023. Identification of groundwater potential zones in the Rabigh-Yanbu area on the western coast of Saudi Arabia using remote sensing (RS) and geographic information system (GIS). Frontiers in Earth Science, 11: 1131200. DOI: 10.3389/feart.2023.1131200.
    Arulbalaji P, Padmalal D, Sreelash K. 2019. GIS and AHP techniques based delineation of groundwater potential zones: A case study from southern Western Ghats, India. Scientific reports, 9(1): 2082. DOI: 10.1038/s41598-019-38567-x.
    Balasubramanian N, Sivasubramanian P, Soundranayagam JP, et al. 2015. Groundwater classification and its suitability in Kadaladi, Ramanathapuram, India using GIS techniques. Environmental Earth Sciences, 74: 3263−3285. DOI: 10.1007/s12665-015-4394-7.
    Biswajit N, Zheng N, Ramesh PS, et al. 2018. Land use and land cover changes, and environment and risk evaluation of Dujiangyan City (SW China) using remote sensing and GIS techniques. Sustainability, 10(12): 4631. DOI: 10.3390/su10124631.
    Chenini I, Msaddek MH. 2020. Groundwater recharge susceptibility mapping using logistic regression model and bivariate statistical analysis. Quarterly Journal of Engineering Geology and Hydrogeology, 53(2): 167−175. DOI: 10.1144/qjegh2019-047.
    Fu CC, Li XQ, Cheng X. 2023. Unraveling the mechanisms underlying lake expansion from 2001 to 2020 and its impact on the ecological environment in a typical alpine basin on the Tibetan Plateau. China Geology, 6(2): 216−227. DOI: 10.31035/cg2023015.
    Muduli A, Chattopadhyay PB, Pal U. 2023. Mapping of heterogeneity on groundwater level and potential zones along expeditiously urbanizing tropical coastal regions. Groundwater for Sustainable Development, 23: 101002. DOI: 10.1016/j.gsd.2023.101002.
    Murmu P, Kumar M, Lal D, et al. 2019. Delineation of groundwater potential zones using geospatial techniques and analytical hierarchy process in Dumka district, Jharkhand, India. Groundwater for Sustainable Development, 9: 100239. DOI: 10.1016/j.gsd.2019.100239.
    Rajasekhar M, Raju GS, Raju RS, et al. 2018. Data on artificial recharge sites identified by geospatial tools in semi-arid region of Anantapur District, Andhra Pradesh, India. Data in Brief, 19: 462−474. DOI: 10.1016/j.dib.2018.04.050.
    Saaty TL. 1980. The analytic hierarchy process. McGraw-Hill International Book Company, New York.
    Saaty TL. 2001. Fundamentals of the analytic hierarchy process. The analytic hierarchy process in natural resource and environmental decision making, 15−35.
    Saaty TL. 2008. Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1): 83−98. DOI: 10.1504/IJSSCI.2008.017590.
    Saranya T, Saravanan S. 2020. Groundwater potential zone mapping using analytical hierarchy process (AHP) and GIS for Kancheepuram District, Tamilnadu, India. Modeling Earth Systems and Environment, 6(2): 1105−1122. DOI: 10.1007/s40808-020-00744-7.
    Sathiyamoorthy M, Masilamani US, Chadee AA, et al. 2023. Sustainability of groundwater potential zones in coastal areas of Cuddalore District, Tamil Nadu, South India using integrated approach of Remote Sensing, GIS and AHP Techniques. Sustainability, 15(6): 5339. DOI: 10.3390/su15065339.
  • 2305-7068/© Journal of Groundwater Science and Engineering Editorial Office. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)

  • Relative Articles

    [1] Edmealem Temesgen, Demelash Wendmagegnehu Goshime, Destaw Akili, 2023: Determination of groundwater potential distribution in Kulfo-Hare watershed through integration of GIS, remote sensing, and AHP in Southern Ethiopia, Journal of Groundwater Science and Engineering, 11, 249-262.  doi: 10.26599/JGSE.2023.9280021
    [2] Temesgen Mekuriaw Manderso, Yitbarek Andualem Mekonnen, Tadege Aragaw Worku, 2023: Application of GIS based analytical hierarchy process and multicriteria decision analysis methods to identify groundwater potential zones in Jedeb Watershed, Ethiopia, Journal of Groundwater Science and Engineering, 11, 221-236.  doi: 10.26599/JGSE.2023.9280019
    [3] Vinay Kumar Gautam, Mahesh Kothari, P.K. Singh, S.R. Bhakar, K.K. Yadav, 2022: Analysis of groundwater level trend in Jakham River Basin of Southern Rajasthan, Journal of Groundwater Science and Engineering, 10, 1-9.  doi: 10.19637/j.cnki.2305-7068.2022.01.001
    [4] Muthamilselvan A Dr, Sekar Anamika, Ignatius Emmanuel, 2022: Identification of groundwater potential in hard rock aquifer systems using Remote Sensing, GIS and Magnetic Survey in Veppanthattai, Perambalur, Tamilnadu, Journal of Groundwater Science and Engineering, 10, 367-380.  doi: 10.19637/j.cnki.2305-7068.2022.04.005
    [5] Kessar Cherif, Benkesmia Yamina, Blissag Bilal, Wahib Kébir Lahsen, 2021: Delineation of groundwater potential zones in Wadi Saida Watershed of NW-Algeria using remote sensing, geographic information system-based AHP techniques and geostatistical analysis, Journal of Groundwater Science and Engineering, 9, 45-64.  doi: 10.19637/j.cnki.2305-7068.2021.01.005
    [6] KHELFAOUI Hakim, DAJBRI Larbi, LAKHAL Fatima Zohra, CHAFFAI Hicham, HANI Azzedine, SAYAD Lamine, 2020: Determination of the origin of mineralization and groundwater salinity in the Adrar region in the southwest of Algeria, Journal of Groundwater Science and Engineering, 8, 158-171.  doi: 10.19637/j.cnki.2305-7068.2020.02.007
    [7] Negar Fathi, Mohammad Bagher Rahnama, Mohammad Zounemat Kermani, 2020: Spatial analysis of groundwater quality for drinking purpose in Sirjan Plain, Iran by fuzzy logic in GIS, Journal of Groundwater Science and Engineering, 8, 67-78.  doi: 10.19637/j.cnki.2305-7068.2020.01.007
    [8] TANG Hai-long, LU Shan-long, CHENG Yan-pei, GE Li-qiang, ZHANG Jian-kang, DONG Hua, SHAO Huai-yong, 2019: Analysis of dynamic changes and influence factors of Lake Balkhash in the last twenty years, Journal of Groundwater Science and Engineering, 7, 214-223.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.002
    [9] Nouayti Abderrahime, Khattach Driss, Hilali Mohamed, Nouayti Nordine, 2019: Mapping potential areas for groundwater storage in the High Guir Basin (Morocco):Contribution of remote sensing and geographic information system, Journal of Groundwater Science and Engineering, 7, 309-322.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.002
    [10] LI Xiao-hang, WANG Rui, LI Jian-feng, 2018: Study on hydrochemical characteristics and formation mechanism of shallow groundwater in eastern Songnen Plain, Journal of Groundwater Science and Engineering, 6, 161-170.  doi: 10.19637/j.cnki.2305-7068.2018.03.001
    [11] Eunhee Lee, Kyoochul Ha, Nguyen Thi Minh Ngoc, Adichat Surinkum, Ramasamy Jayakumar, Yongje Kim, Kamaludin Bin Hassan, 2017: Groundwater status and associated issues in the Mekong-Lancang River Basin: International collaborations to achieve sustainable groundwater resources, Journal of Groundwater Science and Engineering, 5, 1-13.
    [12] Pezhman ROUDGARMI, Ebrahim FARAHANI, 2017: Investigation of groundwater quantitative change, Tehran Province, Iran, Journal of Groundwater Science and Engineering, 5, 278-285.
    [13] Khongsab Somphone, OunakoneKone Xayviliya, 2017: Climate change and groundwater resources in Lao PDR, Journal of Groundwater Science and Engineering, 5, 53-58.
    [14] BAI Bing, CHENG Yan-pei, JIANG Zhong-cheng, ZHANG Cheng, 2017: Climate change and groundwater resources in China, Journal of Groundwater Science and Engineering, 5, 44-52.
    [15] Chamroeun SOK, Sokuntheara CHOUP, 2017: Climate change and groundwater resources in Cambodia, Journal of Groundwater Science and Engineering, 5, 31-43.
    [16] ZHANG Chun-chao, WANG Wen-Ke, SUN Yi-bo, LI Xiang-quan,HOU Xin-wei, 2015: Processes of hydrogeochemical evolution of groundwater in the Guanzhong Basin, China, Journal of Groundwater Science and Engineering, 3, 136-146.
    [17] BI Xue-li, XU Qi, ZHANG Fa-wang, 2015: Application of remote sensing technique to mapping of the map series of karst geology in China and Southeast Asia, Journal of Groundwater Science and Engineering, 3, 186-191.
    [18] MA Shao-bing, ZHOU Jun, LIANG Peng, SU Yao-ming, 2014: Characteristics-based classification research on typical petroleum contaminants of groundwater, Journal of Groundwater Science and Engineering, 2, 41-47.
    [19] Jiansheng Shi, Hongtao Liu, Zhiyuan Liu, Tieliu Chen, 2013: Application of the “Accurate Control Groundwater Resources” Theory in Containment of Groundwater Resource Exhaustion Trend, Journal of Groundwater Science and Engineering, 1, 1-10.
    [20] Jiankang Zhang, Yanpei Cheng, Hua Dong, Qingshi Guo, Kun Liu, Fawang Zhang, 2013: Study on Ecological Environment and Sustainable Land Use Based on Satellite Remote Sensing, Journal of Groundwater Science and Engineering, 1, 89-96.
  • 加载中

Catalog

    Figures(10)  / Tables(6)

    Article Metrics

    Article views (235) PDF downloads(122) Cited by()
    Proportional views
    Related

    JGSE-ScholarOne Manuscript Launched on June 1, 2024.

    Online Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return