• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ EBSCO Scopus GeoRef AJ CNKI
Advanced Search
Volume 12 Issue 2
Jun.  2024
Turn off MathJax
Article Contents
Mebarki H, Maref N, Dris M. 2024. Modelling the monthly hydrological balance using Soil and Water Assessment Tool (SWAT) model: A case study of the Wadi Mina upstream watershed. Journal of Groundwater Science and Engineering, 12(2): 161-177 doi:  10.26599/JGSE.2024.9280013
Citation: Mebarki H, Maref N, Dris M. 2024. Modelling the monthly hydrological balance using Soil and Water Assessment Tool (SWAT) model: A case study of the Wadi Mina upstream watershed. Journal of Groundwater Science and Engineering, 12(2): 161-177 doi:  10.26599/JGSE.2024.9280013

Modelling the monthly hydrological balance using Soil and Water Assessment Tool (SWAT) model: A case study of the Wadi Mina upstream watershed

doi: 10.26599/JGSE.2024.9280013
More Information
  • Corresponding author: m.noure@yahoo.fr
  • Received Date: 2023-12-16
  • Accepted Date: 2024-04-17
  • Available Online: 2024-06-10
  • Publish Date: 2024-06-30
  • Modelling the hydrological balance in semi-arid zones is essential for effective water resource management, encompassing both surface water and groundwater. This study aims to model the monthly hydrological water cycle in the Wadi Mina upstream watershed (northwest Algeria) by applying the Soil and Water Assessment Tool (SWAT) hydrological model. SWAT modelling integrates spatial data such as the Digital Elevation Model (DEM), land use, soil types and various meteorological parameters including precipitation, maximum and minimum temperatures, relative humidity, solar radiation and wind speed. The SWAT model was calibrated and validated using data from January 2012 to December 2014, with a calibration period from January 2012 to August 2013 and a validation period from September 2013 to December 2014. Sensitivity and parameter calibration were conducted using the SWAT-SA program, and model performance evaluation relied on comparing the observed discharge at the outlet of the basin with model-simulated discharge, assessed through statistical coefficients including Nash-Sutcliffe Efficiency (NSE), coefficient of determination (R2) and Percent Bias (PBAIS). Calibration results indicated favourable objective function values (NSE=0.79, R2=0.93, PBAIS= −8.53%), although a slight decrease was observed during validation (NSE=0.69, R2=0.86, and PBAIS= −11.41%). The application of the SWAT model to the Wadi Mina upstream watershed highlighted its utility in simulating the spatial distribution of different components of the hydrological balance in this basin. The SWAT model revealed that approximately 71% of the precipitation in the basin evaporates, while only 29% contributes to surface runoff or infiltration into the soil.
  • 加载中
  • Abbaspour KC, Yang J, Maximov I, et al. 2007. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333/ 413–430.
    Albergel J, Moussa R, Chahinian N. 2003. Les process us hortoniens et leur importance dans la genèse et le développe-ment des cruesen zone semi-arides: genèse des crues et des inondations: comprehension actuelle des phénomènes phy-siques (1 re partie). La Houille Blanche, 6: 65−73. (in French) DOI: 10.1051/lhb/2003114.
    Ang R, Oeurng C. 2018. Simulating streamflow in an ungauged catchment of Tonlesap Lake Basin in Cambodia using Soil and Water Assessment Tool (SWAT) model. Water science, 32(1): 89−101. DOI: 10.1016/j.wsj.2017.12.002.
    Aouissi J, Benabdallah S, Chabaâne ZL, et al. 2016. Evaluation of potential evapotranspiration assessment methods for hydrological modelling with SWAT—Application in data-scarce rural Tunisia. Agricultural Water Management, 174: 39−51. DOI: 10.1016/j.agwat.2016.03.004.
    Arnold JG, Srinivasan R, Muttiah RS, et al. 1998. Large area hydrologic modeling and assessment part I: Model development. Journal of the American Water Resources Association, 34(1): 73−89. DOI: 10.1111/j.1752-1688.1998.tb05961.x.
    Arnold JG, Moriasi DN, Gassman PW, et al. 2012. SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55(4): 1491−1508. DOI: 10.13031/2013.42256.
    Bakreti A, Braud I, Leblois E, et al. 2013. Analyse conjointe des régimes pluviométriques et hydrologiques dans le bassin de la Tafna (Algérie Occidentale). Hydrological Sciences Journal, 58(1): 133−151. (in French) DOI: 10.1080/02626667.2012.745080.
    Benslimane M, Hamimed A, Seddini A, et al. 2014. Utilisation de la teledetection et des SIG pour la modelisation hydrologique du bassin versant de brezina. Journal de l'Eau et de l'Environnement : 18−36. (in French)
    Bouaïchi I, Touaïbia B, Dernouni F. 2006. Approche méthodologique de calcul du débit pluvial en cas d'insuffisance de données: Cas de la région de Tipaza, Algérie. Le Journal de l'Eau et de l'Environnement, 5(8): 7–18. (in French)
    Bouguerra SA, Bouanani A, Baba-Hamed K. 2016. Transport solide dans un cours d'eau en climat semi-aride: cas du bassin versant de l'Oued Boumessaoud (nord-ouest de l'Algérie). Revue des sciences de l'eau, 29(3): 179−195. (in French) DOI: 10.7202/1038923ar.
    Bucak T, Trolle D, Andersen HE, et al. 2017. Future water availability in the largest freshwater Mediterranean lake is at great risk as evidenced from simulations with the SWAT model. Science of the Total Environment, 581-582: 413−425. DOI: 10.1016/j.scitotenv.2016.12.149.
    Chen S, Liu F, Zhang Z, et al. 2021. Changes of groundwater flow field of Luangwa River Delta under the human activities and its impact on the ecological environment in the past 30 years. China Geology, 4(3): 455−462.
    Cheng YP, Dong H. 2015. Groundwater system division and compilation of Groundwater Resources Map of Asia. Journal of Groundwater Science and Engineering, 3(2): 127−135.
    Cibin R, Sudheer KP, Chaubey I. 2010. Sensitivity and identifiability of stream flow generation parameters of the SWAT model. Hydrological Processes, 24(9): 1133–1148.
    Cukier R, Fortuin C, Shuler K, et al. 1973. Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients I Theory. The Journal of Chemical Physics, 59(8): 3873–3878.
    Duan Q, Sorooshian S, Gupta V. 1992. Effective and efficient global optimization for conceptual rainfall runoff. Water Resources Research, 28(4): 1015−1031. DOI: 10.1029/91WR02985.
    El Kateb H, Zhang H, Zhang P, et al. 2013. Soil erosion and surface runoff on different vegetation covers and slope gradients: A field experiment in Southern Shaanxi Province, China. Catena, 105: 1−10. DOI: 10.1016/j.catena.2012.12.012.
    Ertürk A, Ekdal A, Gürel M, et al. 2014. Evaluating the impact of climate change on groundwater resources in a small Mediterranean watershed. Science of the Total Environment, 499: 437−447. DOI: 10.1016/j.scitotenv.2014.07.001.
    Fatichi S, Vivoni ER, Ogden FL, et al. 2016. An overview of current applications, challenges, and future trends in distributed process-based models in hydrology. Journal of Hydrology, 537: 45−60. DOI: 10.1016/j.jhydrol.2016.03.026.
    Ghenim AN, Megnounif A. 2013. Analyse des précipitations dans le Nord-Ouest Algérien. Sécheresse, 24(2): 107−114. (in French) DOI: 10.1684/sec.2013.0380.
    Graf R, Jawgiel K. 2018. The impact of the parameterisation of physiographic features of Urbanised Catchment areas on the spatial distribution of components of the water balance using the WetSpass Model. International Journal of Geo-Information, 7(7): 278. DOI: 10.3390/ijgi7070278.
    Grusson Y, Anctil F, Sauvage S, et al. 2018. Coevolution of hydrological cycle components under climate change: The case of the Garonne River in France. Water, 10(12): 1870. DOI: 10.3390/w10121870.
    Gupta HV, Sorooshian S, Yapo PO. 1999. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. Journal of Hydrologic Engineering, 4(2): 135−143. DOI: 10.1061/(ASCE)1084-0699(1999)4:2(135).
    Gyamfi C, Ndambuki JM, Anornu GK, et al. 2017. Groundwater recharge modelling in a large scale basin: An example using the SWAT hydrologic model. Modeling Earth Systems and Environment, 3: 1361−1369. DOI: 10.1007/s40808-017-0383-z.
    Habibi B, Meddi M, Boucefiane A. 2013. Analyse fréquentielle des pluies journalières maximales Cas du Bassin Chott-Chergui. Nature & Technology, (8): 41−48. (in French)
    Hallouz F, Meddi M, Mahe G. 2013. Modification du régime hydroclimatique dans le bassin de l'Oued Mina (nord-ouest d'Algérie). Revue des Sciences de l'Eau, 26(1): 33−38. (in French) DOI: 10.7202/1014917arCopiedAnerrorhas.
    Hallouz F, Meddi M, Mahé G, et al. 2018. Modeling of discharge and sediment transport through the SWAT model in the basin of Harraza (Northwest of Algeria). Water Science, 32(1): 79−88. DOI: 10.1016/j.wsj.2017.12.004.
    Hao FB, Zhang XS, Yang ZF. 2004. A distributed non-point source pollution model: Calibration and validation in the Yellow River Basin. Journal of Environmental Sciences (China), 16(4): 646−650.
    Hassen M, Melesse AM, Zeleke G, et al. 2016. Streamflow prediction uncertainty analysis and verification of SWAT model in a tropical watershed. Environmental Earth Sciences, 75: 806. DOI: 10.1007/s12665-016-5636-z.
    James LD, Burges SJ. 1982. Selection, calibration, and testing of hydrologic models. Michigan: ASAE: 437–472.
    Kerdoud S. 2006. Le bassin versant de Beni Haroun eau et pollution. Ph. D. thesis. Constantine: Mentouri university, Algeria: 169. (in French
    Khaldi A. 2005. Impacts de la sécheresse sur le régime des écoulements souterrains dans les massifs calcaires de l'Ouest Algérien" Monts de Tlemcen-Saida". Ph. D. thesis. Oran: Oran university, Algeria: 229. (in French
    Koo H, Chen M, Jakeman A, et al. 2020. A global sensitivity analysis approach for identifying critical sources of uncertainty in non-identifiable, spatially distributed environmental models: A holistic analysis applied to SWAT for input datasets and model parameters. Environmental modelling & software, 127: 104676. DOI: 10.1016/j.envsoft.2020.104676.
    Krause S, Bronstert A. 2007. The impact of groundwater–surface water interactions on the water balance of a mesoscale lowland river catchment in northeastern Germany. Hydrological Processes, 21: 169−184. DOI: 10.1002/hyp.6182.
    Laurent F, Ruelland D, Chapdelaine M. 2007. Simulation de l'effet de changements de pratiques agricoles sur la qualité des eaux avec le modèle SWAT. Journal of Water Science, 20(4): 395−408. (in French) DOI: 10.7202/016913ar.
    Lenhart T, Eckhardt K, Fohrer N, et al. 2002. Comparison of two different approaches of sensitivity analysis. Physics and Chemistry of the Earth, Parts A/B/C, 27(9-10): 645−654.
    Liu GD, Wei MH, Yang Z, et al. 2023. Relationship between spatio-temporal evolution of soil pH and geological environment/surface cover in the eastern Nenjiang River Basin of Northeast China during the past 30 years. China Geology, 6(3): 369−382. DOI: 10.31035/cg2022062.
    Liu L, Ao T, Zhou L, et al. 2022. Comprehensive evaluation of parameter importance and optimization based on the integrated sensitivity analysis system: A case study of the BTOP model in the upper Min River Basin, China. Journal of Hydrology, 610: 127819. DOI: 10.1016/j.jhydrol.2022.127819.
    Llasat MC, Llasat-Botija M, Barnolas M, et al. 2009. An analysis of the evolution of hydrometeorological extremes in newspapers: The case of Catalonia, 1982–2006. Natural Hazards and Earth System Sciences, 9: 1201−1212. DOI: 10.5194/nhess-9-1201-2009.
    Mami A. 2020. Impact des changements climatiques sur la disponibilité et la gestion des ressources en eau: cas du bassin versant de la Tafna. Ph. D. thesis. Toulouse: Toulouse university, France: 232. (in French
    Mami A, Yebdri D, Sauvage S, et al. 2021. Spatio-temporal trends of hydrological components: The case of the Tafna basin (northwestern Algeria). Journal of Water and Climate Change, 12(7): 2948−2976.
    Marcelo RV, Carlos RM, Fausto WA, et al. 2009. Modelagem hidrológica na bacia hidrográfica do Rio Aiuruoca, MG. Engenharia Agrícola e Ambiental, 13(5): 581−590. (in French) DOI: 10.1590/S1415-43662009000500011.
    Marhaento H, Booij MJ, Rientjes THM, et al. 2017. Attribution of changes in the water balance of a tropical catchment to land use change using the SWAT model. Hydrological Processes, 31(11): 2029−2040. DOI: 10.1002/hyp.11167.
    Meddi M, Hubert P. 2003. Impact de la modification du régime pluviométrique sur les ressources en eau du nord-ouest de l'Algérie. In : Hydrology of the Mediterranean and Semiarid Regions. Montpellier/IAHS Publ: 278. (in French)
    Mishra AK, Singh VP. 2010. A review of drought concepts. Journal of Hydrology, 391(1-2): 202−216. DOI: 10.1016/j.jhydrol.2010.07.012.
    Moriasi DN, Arnold JG, Van Liew MW, et al. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3): 885−900. DOI: 10.13031/2013.23153)@2007.
    Morris MD. 1991. Factorial sampling plans for preliminary computational experiments. Technometrics, 33(2): 161−174. DOI: 10.2307/1269043.
    Mosbahi M, Benabdallah S, Boussema MR. 2015. Sensitivity analysis of a GIS-based model: A case study of a large semi-arid catchment. Earth Science Informatics, 8: 569−581. DOI: 10.1007/s12145-014-0176-0.
    Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual models part I—a discussion of principles. Journal of Hydrology, 10(3): 282−290. DOI: 10.1016/0022-1694(70)90255-6.
    Ndomba P, Mtalo F, Killingtveit A. 2008. SWAT model application in a data scarce tropical complex catchment in Tanzania. Physics and Chemistry of the Earth, Parts A/B/C, 33(8-13): 626−632.
    Neitsch SL, Arnold JG, Kiniry JR, et al. 2009. Soil and water assessment tool. Grassland: Texas Water Resources Institute Technical Report No. 406: 77843-2118.
    Otmane A, Baba-Hamed K, Bouanani A. 2019. Apport de la variabilité spatiale des caractéristiques physiques du bassin versant dans la modélisation hydrologique et les sous-produits du bilan hydrologique: cas du bassin versant de l'aval Mekerra, Algérie. Revue des sciences de l'eau, 32(2): 117−144. (in French) DOI: 10.7202/1065203ar.
    Pandi D, Kothandaraman S, Kuppusamy M. 2023. Simulation of water balance components using SWAT Model at Sub Catchment Level. Sustainability, 15: 1438. DOI: 10.3390/su15021438.
    Payraudeau S. 2002. Modélisation distribuée des flux d'azote sur des petits bassins versants méditerranéens. Ph. D. thesis. Paris (France): École Nationale du Génie Rural, des Eaux et des Forêts : 231. (in French)
    Poméon T, Diekkrüger B, Springer A, et al. 2018. Multi-objective validation of SWAT for sparsely-gauged West African River Basins—A remote sensing approach. Water, 10: 451. DOI: 10.3390/w10040451.
    Premanand BD, Satishkumar U, Babu BM, et al. 2018. QSWAT model calibration and uncertainty analysis for stream flow simulation in the Patapur micro-watershed using sequential uncertainty fitting method (SUFI-2). International Journal of Current Microbiology and Applied Sciences, 7(4): 831−852. DOI: 10.20546/ijcmas.2018.704.092.
    Remini B. 2005. L'evaporation des lacs de barrages dans les regions arides et semi arides : exemples Algeriens. Larhyss Journal, 4 : 81−89. (in French)
    Robins NS, Fergusson J. 2014. Groundwater scarcity and conflict managing hotspots. Earth perspectives, 1(6): 1−9. DOI: 10.1186/2194-6434-1-6.
    Saltelli A, Chan K, Scott M. 2000. Sensitivity Analysis. New York: Wiley.
    Saltelli A, Tarantola S, Campolongo F, et al. 2004. Sensitivity analysis in practice: A guide to assessing scientific models. New York: Wiley: 232.
    Sane ML, Sambou S, Leye I, et al. 2020. Calibration and validation of the SWAT model on the watershed of Bafing River, main upstream tributary of Senegal River: Checking for the influence of the period of study. Open Journal of Modern Hydrology, 10(04): 81−104. DOI: 10.4236/ojmh.2020.104006.
    Santo FM, Oliveira RP, Mauad FF. 2020. Evaluating a parsimonious watershed model versus SWAT to estimate streamflow, soil loss and river contamination in two case studies in Tietê river basin, São Paulo, Brazil. Journal of Hydrology: Regional studies, 29: 100685. DOI: 10.1016/j.ejrh.2020.100685.
    Schuol J, Abbaspour KC, Srinivasan R, et al. 2008. Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model. Journal of Hydrology, 352(1-2): 30−49. DOI: 10.1016/j.jhydrol.2007.12.025.
    Setegn SG, Srinivasan R, Dargahi B. 2008. Hydrological modelling in the Lake Tana Basin, Ethiopia using SWAT model. The Open Hydrology Journal, 2(1): 49−62. DOI: 10.2174/1874378100802010049.
    Shen X, Anagnostou EN. 2017. A framework to improve hyper-resolution hydrological simulation in snow-affected regions. Journal of hydrology, 552: 1−12. DOI: 10.1016/j.jhydrol.2017.05.048.
    Shivhare N, Dikshit PKS, Dwivedi SB. 2018. A comparison of SWAT model calibration techniques for hydrological modeling in the Ganga River Watershed. Engineering, 4(5): 643−652. DOI: 10.1016/j.eng.2018.08.012.
    Silva MG, Netto AOA, Neves RJ, et al. 2015. Sensitivity analysis and calibration of hydrological modeling of the Watershed Northeast Brazil. Journal of Environmental Protection, 6(08): 837−850. DOI: 10.4236/jep.2015.68076.
    Sintondji LO, Awoye HR, Agbossou KE. 2008. Modélisation du bilan hydrologique du bassin versant du Klou au Centre-Bénin: Contribution à la gestion durable des ressources en eau. Bulletin de la Recherche Agronomique du Bénin, 59: 35−48. (in French)
    Sobol IM. 1993. Sensitivity analysis for non linear mathematical model. Mathematics and Computers in Simulation, 55(1-3): 271−280.
    Sophocleous M. 2002. Interaction between ground water and surface water, the state of the science. Hydrogeology Journal, 10: 52−67. DOI: 10.1007/s10040-001-0170-8.
    Sophocleous M, Perkins SP. 2000. Methodology and application of combined watershed and ground-water models in Kansas. Journal of Hydrology, 236(3-4): 185−201. DOI: 10.1016/S0022-1694(00)00293-6.
    Taleb RB, Naimi M, Chikhaoui M, et al. 2019. Evaluation Des Performances Du Modele Agro-Hydrologique SWAT à Reproduire Le Fonctionnement Hydrologique Du Bassin Versant Nakhla (Rif occidental, Maroc). European Scientific Journal, 15(5): 311−333. (in French) DOI: 10.19044/esj.2019.v15n5p311.
    Tang FF, Xu HS, Xu ZX. 2012. Model calibration and uncertainty analysis for runoff in the Chao River Basin using sequential uncertainty fitting. Procedia Environmental Sciences, 13: 1760−1770. DOI: 10.1016/j.proenv.2012.01.170.
    Tripathi MP, Panda RK, Raghuwanshi NS. 2003. Identification and prioritisation of critical sub-watersheds for soil conservation management using the SWAT model. Biosystems Engineering, 85(3): 365−379. DOI: 10.1016/S1537-5110(03)00066-7.
    Vairavamoorthy K, Gorantiwar SD, Pathirana A. 2008. Managing urban water supplies in developing countries–Climate change and water scarcity scenarios. Physics and Chemistry of the Earth, Parts A/B/C, 33(5): 330−339.
    Venetis C. 1969. A study of the recession of unconfined aquifers. International Association of Scientific Hydrology, 14(4): 119−125. DOI: 10.1080/02626666909493759.
    Vittecoq B, Lachassagne P, Lanini S. 2010. Évaluation des ressources en eau de la Martinique: calcul spatialisé de la pluie efficace et validation à l'échelle du bassin versant. Revue des sciences de l'eau, 23(4): 325−429. (in French) DOI: 10.7202/045095ar.
    Wang XJ, Zhang JY, Shahid S, et al. 2016. Adaptation to climate change impacts on water demand. Mitigation and Adaptation Strategies for Global Change, 21: 81−99. DOI: 10.1007/s11027-014-9571-6.
    Whittaker G, Confesor RB, Di Luzio M, et al. 2010. Detection of overparameterization and overfitting in an automatic calibration of SWAT. Transactions of the ASABE, 53(5): 1487−1499. DOI: 10.13031/2013.34909.
    Xiang X, Ao T, Xiao Q, et al. 2022. Parameter sensitivity analysis of SWAT modeling in the Upper Heihe River Basin using four typical approaches. Applied Sciences, 12(19): 9862. DOI: 10.3390/app12199862.
    Zhao F, Wu Y, Qiu L, et al. 2018. Parameter uncertainty analysis of the SWAT model in a mountain-loess transitional watershed on the Chinese Loess Plateau. Water, 10(6): 690. DOI: 10.3390/w10060690.
    Zettam A, Taleb A, Sauvage S, et al. 2017. Modelling hydrology and sediment transport in a semi-arid and anthropized catchment using the SWAT model: The case of the Tafna River (Northwest Algeria). Water, 9(3): 216. DOI: 10.3390/w9030216.
  • 2305-7068/© Journal of Groundwater Science and Engineering Editorial Office. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)

  • Relative Articles

    [1] Shu-hong Song, Zhen-long Nie, Xin-xin Geng, Xue Shen, Zhe Wang, Pu-cheng Zhu, 2023: Response of runoff to climate change in the area of runoff yield in upstream Shiyang River Basin, Northwest China: A case study of the Xiying River, Journal of Groundwater Science and Engineering, 11, 89-96.  doi: 10.26599/JGSE.2023.9280009
    [2] Ming-nan Yang, Liang Zhu, Jing-tao Liu, Yu-xi Zhang, Bing Zhou, 2023: Influence of water conservancy project on runoff in the source region of the Yellow River and wetland changes in the Lakeside Zone, China, Journal of Groundwater Science and Engineering, 11, 333-346.  doi: 10.26599/JGSE.2023.9280027
    [3] Vinay Kumar Gautam, Mahesh Kothari, P.K. Singh, S.R. Bhakar, K.K. Yadav, 2022: Analysis of groundwater level trend in Jakham River Basin of Southern Rajasthan, Journal of Groundwater Science and Engineering, 10, 1-9.  doi: 10.19637/j.cnki.2305-7068.2022.01.001
    [4] Liang Zhu, Ming-nan Yang, Jing-tao Liu, Yu-xi Zhang, Xi Chen, Bing Zhou, 2022: Evolution of the freeze-thaw cycles in the source region of the Yellow River under the influence of climate change and its hydrological effects, Journal of Groundwater Science and Engineering, 10, 322-334.  doi: 10.19637/j.cnki.2305-7068.2022.04.002
    [5] Shima Nasiri, Hossein Ansari, Ali Naghi Ziaei, 2022: Determination of water balance equation components in irrigated agricultural watersheds using SWAT and MODFLOW models : A case study of Samalqan plain in Iran, Journal of Groundwater Science and Engineering, 10, 44-56.  doi: 10.19637/j.cnki.2305-7068.2022.01.005
    [6] Muhammad Juandi, Islami Nur, 2021: Prediction criteria for groundwater potential zones in Kemuning District, Indonesia using the integration of geoelectrical and physical parameters, Journal of Groundwater Science and Engineering, 9, 12-19.  doi: 10.19637/j.cnki.2305-7068.2021.01.002
    [7] KHELFAOUI Hakim, DAJBRI Larbi, LAKHAL Fatima Zohra, CHAFFAI Hicham, HANI Azzedine, SAYAD Lamine, 2020: Determination of the origin of mineralization and groundwater salinity in the Adrar region in the southwest of Algeria, Journal of Groundwater Science and Engineering, 8, 158-171.  doi: 10.19637/j.cnki.2305-7068.2020.02.007
    [8] Muhammad Juandi, 2020: Water sustainability model for estimation of groundwater availability in Kemuning district, Riau-Indonesia, Journal of Groundwater Science and Engineering, 8, 20-29.  doi: 10.19637/j.cnki.2305-7068.2020.01.003
    [9] LI Xiao-hang, WANG Rui, LI Jian-feng, 2018: Study on hydrochemical characteristics and formation mechanism of shallow groundwater in eastern Songnen Plain, Journal of Groundwater Science and Engineering, 6, 161-170.  doi: 10.19637/j.cnki.2305-7068.2018.03.001
    [10] ZHOU Xun, 2017: Arsenic distribution and source in groundwater of Yangtze River Delta economic region, China, Journal of Groundwater Science and Engineering, 5, 343-353.
    [11] Eunhee Lee, Kyoochul Ha, Nguyen Thi Minh Ngoc, Adichat Surinkum, Ramasamy Jayakumar, Yongje Kim, Kamaludin Bin Hassan, 2017: Groundwater status and associated issues in the Mekong-Lancang River Basin: International collaborations to achieve sustainable groundwater resources, Journal of Groundwater Science and Engineering, 5, 1-13.
    [12] Pezhman ROUDGARMI, Ebrahim FARAHANI, 2017: Investigation of groundwater quantitative change, Tehran Province, Iran, Journal of Groundwater Science and Engineering, 5, 278-285.
    [13] Khongsab Somphone, OunakoneKone Xayviliya, 2017: Climate change and groundwater resources in Lao PDR, Journal of Groundwater Science and Engineering, 5, 53-58.
    [14] BAI Bing, CHENG Yan-pei, JIANG Zhong-cheng, ZHANG Cheng, 2017: Climate change and groundwater resources in China, Journal of Groundwater Science and Engineering, 5, 44-52.
    [15] Chamroeun SOK, Sokuntheara CHOUP, 2017: Climate change and groundwater resources in Cambodia, Journal of Groundwater Science and Engineering, 5, 31-43.
    [16] ZHANG Chun-chao, WANG Wen-Ke, SUN Yi-bo, LI Xiang-quan,HOU Xin-wei, 2015: Processes of hydrogeochemical evolution of groundwater in the Guanzhong Basin, China, Journal of Groundwater Science and Engineering, 3, 136-146.
    [17] Liang ZHU, Wei-dong KANG, Ji-chao SUN, Jing-tao LIU, 2014: Quantitative Calculation of Groundwater Vulnerability Assessment Based on Quantification Theory III, Journal of Groundwater Science and Engineering, 2, 78-85.
    [18] MA Shao-bing, ZHOU Jun, LIANG Peng, SU Yao-ming, 2014: Characteristics-based classification research on typical petroleum contaminants of groundwater, Journal of Groundwater Science and Engineering, 2, 41-47.
    [19] Jingli Shao, Yali Cui, Yunzhang Zhao, 2013: A Study on Infiltration and Groundwater Development in the Influent Zone of the Perched Lower Yellow River, Journal of Groundwater Science and Engineering, 1, 46-53.
    [20] Jiansheng Shi, Hongtao Liu, Zhiyuan Liu, Tieliu Chen, 2013: Application of the “Accurate Control Groundwater Resources” Theory in Containment of Groundwater Resource Exhaustion Trend, Journal of Groundwater Science and Engineering, 1, 1-10.
  • 加载中

Catalog

    Figures(13)  / Tables(4)

    Article Metrics

    Article views (324) PDF downloads(138) Cited by()
    Proportional views
    Related

    JGSE-ScholarOne Manuscript Launched on June 1, 2024.

    Online Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return