Citation: | Ling CP, Zhang Q. 2024. Exploring the groundwater response to rainfall in a translational landslide using the master recession curve method and cross-correlation function. Journal of Groundwater Science and Engineering, 12(3): 237-252 doi: 10.26599/JGSE.2024.9280018 |
Bernardie S, Desramaut N, Malet JP, et al. 2015. Prediction of changes in landslide rates induced by rainfall. Landslides, 12(3): 481−494. DOI: 10.1007/s10346-014-0495-8.
|
Cai ZS, Ofterdinger U. 2016. Analysis of groundwater-level response to rainfall and estimation of annual recharge in fractured hard rock aquifers, NW Ireland. Journal of Hydrology, 535: 71−84. DOI: 10.1016/j.jhydrol.2016.01.066.
|
Ciupak M, Ozga-Zielinski B, Adamowski J, et al. 2015. The application of Dynamic Linear Bayesian Models in hydrological forecasting: Varying Coefficient Regression and Discount Weighted Regression. Journal of Hydrology, 530: 762−784. DOI: 10.1016/j.jhydrol.2015.10.023.
|
Crosbie RS, Doble RC, Turnadge C, et al. 2019. Constraining the magnitude and uncertainty of specific yield for use in the water table fluctuation method of estimating recharge. Water Resources Research, 55(8): 7343−7361. DOI: 10.1029/2019wr025285.
|
Fan XM, Xu Q, Zhang ZY, et al. 2009. The genetic mechanism of a translational landslide. Bulletin of Engineering Geology and the Environment, 68(2): 231−244. DOI:10.1007/ s10064-009-0194-1.
|
Glade T, Crozier MJ. 2005. The nature of landslide hazard impact. In: Glade T, Anderson M, Crozier MJ. (eds) Landslide hazard and risk. Wiley, New York: Academic Press: 43–74.
|
Healy RW, Cook PG. 2002. Using groundwater levels to estimate recharge. Hydrogeology Journal, 10(1): 91−109. DOI: 10.1007/s10040-001-0178-0.
|
Hong YM, Wan S. 2011. Forecasting groundwater level fluctuations for rainfall-induced landslide. Natural Hazards, 57(2): 167−184. DOI: 10.1007/s11069-010-9603-9.
|
Hou RN, Chen NS, Hu GS, et al. 2022. Characteristics, mechanisms, and post-disaster lessons of the delayed semi-diagenetic landslide in Hanyuan, Sichuan, China. Landslides, 19(2): 437−449. DOI: 10.1007/s10346-021-01751-0.
|
Jan CD, Chen TH, Lo WC. 2007. Effect of rainfall intensity and distribution on groundwater level fluctuations. Journal of Hydrology, 332(3−4): 348−360. DOI: 10.1016/j.jhydrol.2006.07.010.
|
Labrecque G, Chesnaux R, Boucher MA. 2020. Water-table fluctuation method for assessing aquifer recharge: Application to Canadian aquifers and comparison with other methods. Hydrogeology Journal, 28(2): 521−533. DOI: 10.1007/s10040-019-02073-1.
|
Leng YY, Kong XZ, He JY, et al. 2022. The July 10, 2020, red-bed landslide triggered by continuous rainfall in Qianxi, Guizhou, China. Landslides, 19(6): 1421−1433. DOI: 10.1007/s10346-022-01851-5.
|
Ling CP, Xu Q, Zhang Q, et al. 2016. Application of electrical resistivity tomography for investigating the internal structure of a translational landslide and characterizing its groundwater circulation (Kualiangzi landslide, Southwest China). Journal of Applied Geophysics, 131: 154−162. DOI: 10.1016/j.jappgeo.2016.06.003.
|
Luna LV, Korup O. 2022. Seasonal landslide activity lags annual precipitation pattern in the Pacific northwest. Geophysical Research Letters, 49(18): e2022GL098506. DOI: 10.1029/2022gl098506.
|
Lv HB, Ling CP, Hu BX, et al. 2019. Characterizing groundwater flow in a translational rock landslide of southwestern China. Bulletin of Engineering Geology and the Environment, 78(3): 1989−2007. DOI: 10.1007/s10064-017-1212-3.
|
Maréchal JC, Perrochet P, Caballero Y. 2023. Computing natural recharge using the water-table fluctuation method: Where to site an observation well. Hydrogeology Journal, 31(7): 1991−1995. DOI: 10.1007/s10040-023-02707-5.
|
Nimmo JR, Horowitz C, Mitchell L. 2015. Discrete-storm water-table fluctuation method to estimate episodic recharge. Ground Water, 53(2): 282−292. DOI: 10.1111/gwat.12177.
|
Sahoo S, Jha MK. 2013. Groundwater-level prediction using multiple linear regression and artificial neural network techniques: A comparative assessment. Hydrogeology Journal, 21(8): 1865−1887. DOI: 10.1007/s10040-013-1029-5.
|
Shah B, Alam A, Bhat MS, et al. 2023. Extreme precipitation events and landslide activity in the Kashmir Himalaya. Bulletin of Engineering Geology and the Environment, 82(8): 328. DOI: 10.1007/s10064-023-03350-w.
|
Song LF, Yu X, Xu B, et al. 2021. 3D slope reliability analysis based on the intelligent response surface methodology. Bulletin of Engineering Geology and the Environment, 80(2): 735−749. DOI: 10.1007/s10064-020-01940-6.
|
Tesfaldet YT, Puttiwongrak A, Arpornthip T. 2020. Spatial and temporal variation of groundwater recharge in shallow aquifer in the Thepkasattri of Phuket, Thailand. Journal of Groundwater Science and Engineering, 8(1): 10−19. DOI: 10.19637/j.cnki.2305-7068.2020.01.002.
|
Vallet A, Charlier JB, Fabbri O, et al. 2016. Functioning and precipitation-displacement modelling of rainfall-induced deep-seated landslides subject to creep deformation. Landslides, 13(4): 653−670. DOI: 10.1007/s10346-015-0592-3.
|
van Asch TWJ. 2005. Modelling the hysteresis in the velocity pattern of slow-moving earth flows: The role of excess pore pressure. Earth Surface Processes and Landforms, 30(4): 403−411. DOI: 10.1002/esp.1147.
|
Wen BP, Wang SJ, Wang EZ, et al. 2004. Characteristics of rapid giant landslides in China. Landslides, 1(4): 247−261. DOI: 10.1007/s10346-004-0022-4.
|
Xu Q, Liu HX, Ran JX, et al. 2016. Field monitoring of groundwater responses to heavy rainfalls and the early warning of the Kualiangzi landslide in Sichuan Basin, southwestern China. Landslides, 13(6): 1555−1570. DOI: 10.1007/s10346-016-0717-3.
|
Yan Q, Ma C. 2016. Application of integrated ARIMA and RBF network for groundwater level forecasting. Environmental Earth Sciences, 75(5): 396. DOI: 10.1007/s12665-015-5198-5.
|
Yoon H, Hyun Y, Ha K, et al. 2016. A method to improve the stability and accuracy of ANN- and SVM-based time series models for long-term groundwater level predictions. Computers & Geosciences, 90: 144−155. DOI: 10.1016/j.cageo.2016.03.002.
|
Zhai GJ. 2011. Analysis of the basic characteristics and deformation mechanism of Kualiangzi landslide in Zhongjiang. M. S. thesis. Chengdu: Chengdu University of Technology: 16–36.
|
Zhang M, Yin YP, Huang BL. 2015. Mechanisms of rainfall-induced landslides in gently inclined red beds in the eastern Sichuan Basin, SW China. Landslides, 12(5): 973−983. DOI: 10.1007/s10346-015-0611-4.
|
2305-7068/© Journal of Groundwater Science and Engineering Editorial Office. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)
[1] | Hanane Mebarki, Noureddine Maref, Mohammed El-Amine Dris, 2024: Modelling the monthly hydrological balance using Soil and Water Assessment Tool (SWAT) model: A case study of the Wadi Mina upstream watershed, Journal of Groundwater Science and Engineering, 12, 161-177. doi: 10.26599/JGSE.2024.9280013 |
[2] | Ming-nan Yang, Liang Zhu, Jing-tao Liu, Yu-xi Zhang, Bing Zhou, 2023: Influence of water conservancy project on runoff in the source region of the Yellow River and wetland changes in the Lakeside Zone, China, Journal of Groundwater Science and Engineering, 11, 333-346. doi: 10.26599/JGSE.2023.9280027 |
[3] | Jin-xing Guo, Zhi-ping Li, Catalin Stefan, 2022: Managed aquifer recharge (MAR) applications in China–achievements and challenges, Journal of Groundwater Science and Engineering, 10, 57-69. doi: 10.19637/j.cnki.2305-7068.2022.01.006 |
[4] | Vinay Kumar Gautam, Mahesh Kothari, P.K. Singh, S.R. Bhakar, K.K. Yadav, 2022: Analysis of groundwater level trend in Jakham River Basin of Southern Rajasthan, Journal of Groundwater Science and Engineering, 10, 1-9. doi: 10.19637/j.cnki.2305-7068.2022.01.001 |
[5] | M Shahbaz Akhtar, Yoshitaka Nakashima, Makoto Nishigaki, 2021: Clogging mechanisms and preventive measures in artificial recharge systems, Journal of Groundwater Science and Engineering, 9, 181-201. doi: 10.19637/j.cnki.2305-7068.2021.03.002 |
[6] | Hao ZHOU, Yong WU, Feng HUANG, Xue-fang TANG, 2021: Experimental simulation and dynamic model analysis of Cadmium (Cd) release in soil affected by rainfall leaching in a coal-mining area, Journal of Groundwater Science and Engineering, 9, 65-72. doi: 10.19637/j.cnki.2305-7068.2021.01.006 |
[7] | KHELFAOUI Hakim, DAJBRI Larbi, LAKHAL Fatima Zohra, CHAFFAI Hicham, HANI Azzedine, SAYAD Lamine, 2020: Determination of the origin of mineralization and groundwater salinity in the Adrar region in the southwest of Algeria, Journal of Groundwater Science and Engineering, 8, 158-171. doi: 10.19637/j.cnki.2305-7068.2020.02.007 |
[8] | Mohammad Tofayal Ahmed, Minhaj Uddin Monir, Md Yeasir Hasan, Md Mominur Rahman, Md Shamiul Islam Rifat, Md Naim Islam, Abu Shamim Khan, Md Mizanur Rahman, Md Shajidul Islam, 2020: Hydro-geochemical evaluation of groundwater with studies on water quality index and suitability for drinking in Sagardari, Jashore, Journal of Groundwater Science and Engineering, 8, 259-273. doi: 10.19637/j.cnki.2305-7068.2020.03.006 |
[9] | Muhammad Juandi, 2020: Water sustainability model for estimation of groundwater availability in Kemuning district, Riau-Indonesia, Journal of Groundwater Science and Engineering, 8, 20-29. doi: 10.19637/j.cnki.2305-7068.2020.01.003 |
[10] | SAMI Guellouh, ABDELWAHHAB Filali, Med ISSAM Kalla, 2020: Estimation of the peak flows in the catchment area of Batna (Algeria), Journal of Groundwater Science and Engineering, 8, 79-86. doi: 10.19637/j.cnki.2305-7068.2020.01.008 |
[11] | Yacob T Tesfaldet, Avirut Puttiwongrak, Tanwa Arpornthip, 2020: Spatial and temporal variation of groundwater recharge in shallow aquifer in the Thepkasattri of Phuket, Thailand, Journal of Groundwater Science and Engineering, 8, 10-19. doi: 10.19637/j.cnki.2305-7068.2020.01.002 |
[12] | ZHOU Nian-qing, LI Tian-shui, ZHAO Shan, ZHAO Shan, XIA Xue-min, 2019: Characteristics of the main inorganic nitrogen accumulation in surface water and groundwater of wetland succession zones, Journal of Groundwater Science and Engineering, 7, 173-181. doi: 10.19637/j.cnki.2305-7068.2019.02.008 |
[13] | Pezhman ROUDGARMI, Ebrahim FARAHANI, 2017: Investigation of groundwater quantitative change, Tehran Province, Iran, Journal of Groundwater Science and Engineering, 5, 278-285. |
[14] | Khongsab Somphone, OunakoneKone Xayviliya, 2017: Climate change and groundwater resources in Lao PDR, Journal of Groundwater Science and Engineering, 5, 53-58. |
[15] | BAI Bing, CHENG Yan-pei, JIANG Zhong-cheng, ZHANG Cheng, 2017: Climate change and groundwater resources in China, Journal of Groundwater Science and Engineering, 5, 44-52. |
[16] | Chamroeun SOK, Sokuntheara CHOUP, 2017: Climate change and groundwater resources in Cambodia, Journal of Groundwater Science and Engineering, 5, 31-43. |
[17] | ZHANG Chun-chao, WANG Wen-Ke, SUN Yi-bo, LI Xiang-quan,HOU Xin-wei, 2015: Processes of hydrogeochemical evolution of groundwater in the Guanzhong Basin, China, Journal of Groundwater Science and Engineering, 3, 136-146. |
[18] | Jiansheng Shi, Hongtao Liu, Zhiyuan Liu, Tieliu Chen, 2013: Application of the “Accurate Control Groundwater Resources” Theory in Containment of Groundwater Resource Exhaustion Trend, Journal of Groundwater Science and Engineering, 1, 1-10. |
[19] | Meng-jie Wu, Hui-zhen Hen, 2013: Brief Talk of Groundwater Resources in Role of Rural Drinking Water Safety and Construction of City Emergency Water Source, Journal of Groundwater Science and Engineering, 1, 40-52. |
[20] | Yan Zhang, Shuai Song, Jing Li, Fadong Li, Guangshuai Zhao, Qiang Liu, 2013: Stable Isotope Composition of Rainfall, Surface Water and Groundwater along the Yellow River, Journal of Groundwater Science and Engineering, 1, 82-88. |
JGSE-ScholarOne Manuscript Launched on June 1, 2024.