• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ EBSCO Scopus GeoRef AJ CNKI
Advanced Search
Volume 12 Issue 4
Dec.  2024
Turn off MathJax
Article Contents
Ganie PA, Posti R, Garima, et al. 2024. Morphometric analysis and hydrological implications of the Himalayan River Basin, Goriganga, India, using Remote Sensing and GIS techniques. Journal of Groundwater Science and Engineering, 12(4): 360-386 doi:  10.26599/JGSE.2024.9280028
Citation: Ganie PA, Posti R, Garima, et al. 2024. Morphometric analysis and hydrological implications of the Himalayan River Basin, Goriganga, India, using Remote Sensing and GIS techniques. Journal of Groundwater Science and Engineering, 12(4): 360-386 doi:  10.26599/JGSE.2024.9280028

Morphometric analysis and hydrological implications of the Himalayan River Basin, Goriganga, India, using Remote Sensing and GIS techniques

doi: 10.26599/JGSE.2024.9280028
More Information
  • Corresponding author: parvaizahmad12@gmail.com
  • Received Date: 2023-12-10
  • Accepted Date: 2024-09-21
  • Available Online: 2024-12-06
  • Publish Date: 2024-12-15
  • The application of Geographic Information System (GIS) methodologies offers valuable insights into the hydrological behaviour of watersheds through the analysis of their morphometric attributes. This study focuses on the Goriganga River, a major tributary of the Ganga River system, by conducting a detailed morphometric analysis using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery with 30 m resolution, alongside survey of India topographic sheets. Thirty-two watersheds within the river basin were delineated to calculate linear, areal, and relief morphometric parameters, covering a total drainage area of 2,183.11 km2. The drainage pattern, primarily dendritic to sub-dendritic, is shaped by the region's topography, geological structure, and precipitation patterns. Classified as a 6th-order basin, the drainage density ranges from 1.21 km/km2 to 1.96 km/km2, underlining the significant influence of the regional physiography and lithological composition on the stream ordering. Relief analysis suggests the basin is in an early developmental stage, characterised by varying slope gradients and a low to moderate risk of soil erosion. The basin's hydrogeology is complex, with aquifer distribution primarily governed by lithological factors. Limestone, due to its high permeability and karst features, forms the principal aquifer, although it is susceptible to contamination. In contrast, groundwater potential in the Basement Gneissic Complex and Schist regions is limited to structurally controlled zones, while shale acts as an aquitard. The basin's heterogeneous aquifer characteristics emphasize the need for localized groundwater management strategies tailored to specific lithological units. The integration of remote sensing and GIS techniques effectively delineates the basin's morphometric and hydrogeological characteristics, providing critical information for the development of sustainable water resource management strategies.
  • 加载中
  • Abijith D, Saravanan S, Singh L, et al. 2020. GIS-based multi-criteria analysis for identification of potential groundwater recharge zones - a case study from Ponnaniyaru watershed, Tamil Nadu, India. Hydrological Research, 3: 1−14. DOI: 10.1016/j.hydres.2020.02.002.
    Abrams M, Hook S, Ramachandran B. 2002. ASTER User Handbook Version 2. Jet Propulsion Laboratory, 4800: 135.
    Aher PD, Adinarayana J, Gorantiwar SD. 2014. Quantifcation of morphometric characterization and prioritization for management planning in semi-arid tropics of India: A remote sensing and GIS approach. Journal of Hydrology, 511: 850−860. DOI: 10.1016/j.jhydrol.2014.02.028.
    Ashok K. 2014. Studies on Ichthyofaunal Diversity with special reference to monthly and seasonal variations of fish landings in glacial fed Mountainous Goriganga River of Kumaun Himalaya, Uttarakhand, India. Research Journal of Animal, Veterinary and Fishery Sciences, 2(4): 1−12.
    ASTER G. 2011. Validation Team: ASTER global digital elevation model version 2–summary of validation results. NASA Land Processes Distributed Active Archive Center and Joint Japan-US ASTER Science Team, 435.
    Chorley RJ. 1957. Climate and morphometry. The Journal of Geology, 65(6): 628−638. DOI: 10.1086/626468.
    Clark L. 1985. Groundwater abstraction from basement complex areas of Africa. Quarterly Journal of Engineering Geology and Hydrogeology, 18(1): 25−34. DOI: 10.1144/GSL.QJEG.1985.018.01.05.
    Congalton RG, Green K. 2009. Assessing the accuracy of remotely sensed data - Principles and practices. Second edition. CRC Press, Taylor & Francis Group, Boca Raton, FL 978-1-4200-5512-2.
    Das PK. 2015. Global warming, glacial lakes and cloud burst events in Garhwal-Kumaon Himalaya: A hypothetical analysis. International Journal of Environmental Sciences, 5(4): 697−708. DOI: 10.6088/ijes.2014050100065.
    Esper Angillieri MY. 2008. Morphometric analysis of Colangüil River Basin and flash flood hazard, San Juan, Argentina. Environmental Geology, 55(1): 107−111. DOI: 10.1007/s00254-007-0969-2.
    Faniran A. 1968. The index of drainage intensity: A provisional new drainage factor. Australian Journal of Science, 31(9): 326−330.
    Ganie PA, Posti R, Pandey PK. 2024. Exploring and modelling the hydro-morphological landscape of a Himalayan basin: A geospatial study of Nandakini Basin in Uttarakhand, India. Discover Geoscience, 2(1): 27. DOI: 10.1007/s44288-024-00032-2.
    Ganie PA, Posti R, Aswal AS, et al. 2023a. A comparative analysis of the vertical accuracy of multiple open-source digital elevation models for the mountainous terrain of the north-western Himalaya. Modeling Earth Systems and Environment, 9(2): 2723−2743. DOI: 10.1007/s40808-022-01641-x.
    Ganie PA, Posti R, Bharti VS, et al. 2023b. Striking a balance between conservation and development: A geospatial approach to watershed prioritisation in the Himalayan Basin. Conservation, 3(4): 460−490. DOI: 10.3390/conservation3040031.
    Ganie PA, Posti R, Kumar P, et al. 2016. Morphometric analysis of a Kosi River Basin, Uttarakhand using geographical information system. International Journal of Multidisciplinary and Current Research, 4: 1190−1200.
    Ganie PA, Posti R, Kunal G, et al. 2024a. Principle and applications of Geographic Information System (GIS) in coldwater fisheries development in India. In: Sarma D, Chandra S, Mallik SK. (eds) Aquaculture and Conservation of Inland Coldwater Fishes. Springer, Singapore. DOI: 10.1007/978-981-97-1790-3_25.
    Ganie PA, Posti R, Kunal K. 2023c. Modelling of the Himalayan Mountain river basin through hydro-morphological and compound factor-based approaches using geoinformatics tools. Modeling Earth Systems and Environment, 9(3): 3053−3084. DOI: 10.1007/s40808-023-01691-9.
    Ganie PA, Posti R, Kunal K, et al. 2022. Insights into the morphometric characteristics of the Himalayan River using remote sensing and GIS techniques: A case study of Saryu Basin, Uttarakhand, India. Applied Geomatics, 14(4): 707−730. DOI: 10.1007/s12518-022-00461-z.
    Gayen S, Bhunia GS, Shit PK. 2013. Morphometric analysis of Kangshabati-Darkeswar Interfuves area in West Bengal, India using ASTER DEM and GIS techniques. Journal of Geological Sciences, 2(4): 1−10. DOI: 10.4172/2329-6755.1000133.
    Geological Survey of India (GSI). 1981. Mineralogical map of Karnataka and Goa. Geological Survey of India.
    Giusti EV, Schneider WJ. 1965. The distribution of branches in river networks. USGS professional paper, 422G, US Geological Survey. DOI: 10.3133/pp422G.
    Gottschalk LC. 1964. Reservoir sedimentation reservoir sedimentation. In: Chow VT, Ed. , Handbook of Applied Hydrology, McGraw Hill Book Company, New York.
    Guth PL. 2011. Drainage basin morphometry: A global snapshot from the shuttle radar topography mission. Hydrology and Earth System Sciences, Copernicus Publications. European Geosciences Union. DOI: 10.5194/hess-15-2091-2011.
    Gustafson GU, Krásný J. 1994. Crystalline rock aquifers: Their occurrence, use and importance. Applied Hydrogeology, 2: 64−75. DOI: 10.1007/s100400050051.
    Lü QT, Yan JY, Chen XH, et al. 2020. Progress of deep geological survey project under the China geological survey. China Geology, 3(1): 153−72. DOI: 10.31035/cg2020001.
    Hoek E, Marinos P, Marinos V. 2005. Characterization and engineering properties of tectonically undisturbed but lithologically varied sedimentary rock masses. International Journal of Rock Mechanics and Mining Sciences, 42/2: 277−285. DOI: 10.1016/j.ijrmms.2004.09.015.
    Horton RE. 1932. Drainage-basin characteristics. Transactions, American Geophysical Union, 13(1): 350−361. DOI: 10.1029/TR013i001p00350.
    Horton RE. 1945. Erosional development of streams and their drainage basins, hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56(3): 275−370. DOI: 10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2.
    Howard AD. 1990. Theoretical model of optimal drainage networks. Water Resources Research, 26(9): 2107−2117. DOI: 10.1029/WR026i009p02107.
    Joshi LM, Kotlia BS. 2015. Neotectonically triggered instability around the palaeolake regime in Central Kumaun Himalaya, India. Quaternary International, 371: 219−231. DOI: 10.1016/j.quaint.2014.10.033.
    Kabite G, Gessesse B. 2018. Hydro-geomorphological characterization of Dhidhessa River Basin, Ethiopia. International Soil and Water Conservation Research, 6: 175−83. DOI: 10.1016/j.iswcr.2018.02.003.
    Kaplan D, Hegarty CJ. 2006. Understanding GPS: Principles and applications. Artech House, Boston, London, 32.
    Kačaroğlu F. 1999. Review of groundwater pollution and protection in karst areas. Water, Air, and Soil Pollution, 113: 337−356. DOI: 10.1023/A:1005014532330.
    Khatoon T, Javed A. 2022. Morphometric behavior of Shahzad Watershed, Lalitpur District, Uttar Pradesh, India: A geospatial approach. Journal of Geographic Information System, 14(3): 193−220. DOI: 10.4236/jgis.2022.143011.
    Krishnan A, Ramasamy J. 2022. Morphometric assessment and prioritization of the South India Moyar river basin sub-watersheds using a geo-computational approach. Geology, Ecology, and Landscapes, 1−11. DOI: 10.1080/24749508.2022.2109819.
    Kumar L, Joshi G, Agarwal KK. 2020. Morphometry and morphostructural studies of the parts of Gola River and Kalsa River Basins, Chanphi-Okhalkanda Region, Kumaun Lesser Himalaya, India. Geotectonics, 54(3): 410−427. DOI: 10.1134/S0016852120030048.
    Kumar N, Singh SK, Singh VG, et al. 2018. Investigation of impacts of land use/land cover change on water availability of Tons River Basin, Madhya Pradesh, India. Modeling Earth System Environment, 4: 295−310. DOI: 10.1007/s40808-018-0425-1.
    Lachassagne P, Dewandel B, Wyns R. 2021. Hydrogeology of weathered crystalline/hard-rock aquifers—guidelines for the operational survey and management of their groundwater resources. Hydrogeology Journal, 29(8): 2561−94. DOI: 10.1007/s10040-021-02339-7.
    Loritz R, Kleidon A, Jackisch C, et al. 2019. A topographic index explaining hydrological similarity by accounting for the joint controls of runoff formation. Hydrology and Earth System Sciences, 23(9): 3807−3821. DOI: 10.5194/hess-23-3807-2019.
    Mahadevaswamy G, Nagaraju D, Siddalingamurthy S, et al. 2011. Morphometric analysis of Nanjangud taluk, Mysore District, Karnataka, India, using GIS Techniques. International Journal of Geomatics and Geosciences, 1(4): 721−734.
    Miller VC. 1953. A quantitative geomorphologic study of drainage basin characteristics in the Clinch Mountain area, Virginia and Tennessee, Project NR 389-042, Tech Report 3. Columbia University.
    Mohamed E. 2020. Watershed delineation and morphometric analysis using remote sensing and GIS mapping techniques in Qena-Safaga-Bir Queh, Central Eastern Desert. International Journal of Water Resources and Environmental Engineering, 12(2): 22–46. DOI: 10.5897/ijwree2019.0896.
    Moharir K, Pande C, Patode RS, et al. 2021. Prioritization of sub-watersheds based on morphometric parameter analysis using geospatial technology. Water Management and Water Governance: Hydrological Modeling, 19−33. DOI:  10.1007/978-3-030-58051-3_2
    Morris DG, Heerdegen RG. 1988. Automatically derived catchment boundaries and channel networks and their hydrological applications. Geomorphology, 1(2): 131−141. DOI: 10.1016/0169-555X(88)90011-6.
    Mustak SK, Baghmar NK, Ratre CR. 2012. Measurement of dissection index of Pairi River basin using remote sensing and GIS. National Geographical Journal of India, 58(2): 97−106.
    Muthamilselvan A, Rajasekaran N, Suresh R. 2019. Mapping of hard rock aquifer system and artificial recharge zonation through remote sensing and GIS approach in parts of Perambalur District of Tamil Nadu, India. Journal of Groundwater Science and Engineering. 7(3): 264−281. DOI: 10.19637/j.cnki.2305-7068.2019.03.007.
    Nag SK, Chakraborty S. 2003. Influence of rock types and structures in the development of drainage network in hard rock area. Journal of the Indian Society of Remote Sensing, 31(1): 25–35. DOI:10.1007/BF030 30749.
    Nag SK. 1998. Morphometric analysis using remote sensing techniques in the Chaka sub-basin, Purulia district, West Bengal. Journal of the Indian Society of Remote Sensing, 26(1): 69−76. DOI: 10.1007/BF03007341.
    Neuzil CE. 1994. How permeable are clays and shales? Water resources research, 30(2): 145−150. DOI: 10.1029/93WR02930.
    Nikhil Raj PP, Azeez PA. 2012. Morphometric analysis of a tropical medium river system: A case from Bharathapuzha river southern India. Open Journal of Modern Hydrology, 02: 91−98. DOI: 10.4236/ojmh.2012.24011.
    Olszevski N, Fernandes Filho EI, Costa LM, et al. 2011. Morphology and hydrological aspects of Black River Basin, division of state of Rio de Janeiro and Minas Gerais. Revi Árvore, 35(3): 485–492. DOI:10. 1590/S0100-67622011000300011.
    Pankaj A, Kumar P. 2009. GIS-based morphometric analysis of fve major sub-watersheds of Song River, Dehradun District, Uttarakhand with special reference to landslide incidences. Journal of the Indian Society of Remote Sensing, 37(1): 157−166. DOI: 10.1007/s12524-009-0007-9.
    Phillips JD. 2006. Evolutionary geomorphology: Thresholds and nonlinearity in landform response to environmental change. Hydrology and Earth System Sciences, 10(5): 731−742. DOI: 10.5194/hess-10-731-2006.
    Rai PK, Mohan K, Mishra S, et al. 2017. A GIS-based approach in drainage morphometric analysis of Kanhar River Basin, India. Applied Water Science, 7(1): 217−232. DOI: 10.1007/s13201-014-0238-y.
    Reddy GP, Maji AK, Gajbhiye KS. 2004. Drainage morphometry and its infuence on landform characteristics in a basaltic terrain, Central India–a remote sensing and GIS approach. International Journal of Applied Earth Observation and Geoinformation, 6(1): 1–16. DOI: 10.1016/j.jag.2004.06.003.
    Saha S, Das J, Mandal T. 2022. Investigation of the watershed hydro-morphologic characteristics through the morphometric analysis: A study on Rayeng basin in Darjeeling Himalaya. Environmental Challenges, 7: 100463. DOI: 10.1016/j.envc.2022.100463.
    Schumm SA. 1956. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67(5): 597−646. DOI: 10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2.
    Selvan MT, Ahmad S, Rashid SM. 2011. Analysis of the geomorphometric parameters in high altitude glaciered terrain using SRTM DEM data in Central Himalaya, India. ARPN Journal of Science and Technology, 1(1): 22−27.
    Shekar PR, Mathew A. 2022. Evaluation of morphometric and hypsometric analysis of the Bagh River basin using remote sensing and geographic information system techniques. Energy Nexus, 7: 100−104. DOI: 10.1016/j.nexus.2022.100104.
    Shrestha AB, Bajracharya SR, Sharma AR, et al. 2017. Observed trends and changes in daily temperature and precipitation extremes over the Koshi river basin 1975–2010. International Journal of Climatology, 37(2): 1066–1083. DOI: 10.1002/joc.4761.
    Singh S, Singh MB. 1997. Morphometric analysis of Kanhar river basin. National Geographical Journal of India, 43(1): 31−43.
    Smith KG. 1950. Standards for grading texture of erosional topography. American Journal of Science, 248(9): 655−668. DOI: 10.2475/ajs.248.9.655.
    Sreedevi PD, Owais SHHK, Khan HH, et al. 2009. Morphometric analysis of a watershed of South India using SRTM data and GIS. Journal of Geological Society of India, 273(4): 543−552. DOI: 10.1007/s12594-009-0038-4.
    Strahler AN. 1952. Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin, 63(11): 1117−1142. DOI: 10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2.
    Strahler AN. 1957. Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38(6): 913−920. DOI: 10.1029/TR038i006p00913.
    Strahler AN. 1964. Part II. Quantitative geomorphology of drainage basins and channel networks. In: Chow V, Ed., Handbook of Applied Hydrology, McGraw Hill, New York, 439−476.
    Subayani AM, Qari MH, Matsah MI. 2012. Digital elevation model and multivariate statistical analysis of morphometric parameters of some wadis, western Saudi Arabia. Arabian Journal of Geosciences, 5(1): 147−157. DOI: 10.1007/s12517-010-0149-7.
    Tarboton DG, Baker ME. 2008. Towards an algebra for terrain-based flow analysis. Representing, Modeling and Visualizing the Natural Environment: Innovations in GIS, 13: 167−194. DOI: 10.1201/9781420055504.
    Tassew BG, Belete MA, Miegel K. 2021. Assessment and analysis of morphometric characteristics of Lake Tana sub-basin, Upper Blue Nile Basin, Ethiopia. International Journal of River Basin Management, 21(2): 195−209. DOI: 10.1080/15715124.2021.1938091.
    Thomas J, Joseph S, Thrivikramaji KP. 2010. Morphometric aspects of a small tropical mountain river system, the southern Western Ghats, India. International Journal of Digital Earth, 3(2): 135−156. DOI: 10.1080/17538940903464370.
    UNAVCO facility. Geoid height calculator, Accessed on on 20 August 2024.
    Valdiya KS. 1976. Himalayan transverse faults and folds and their parallelism with subsurface structures of North Indian plains. Tectonophysics, 32(3/4): 353−386. DOI: 10.1016/0040-1951(76)90069-X.
    Valdiya KS. 1980. Geology of Kumaun lesser Himalaya (Vol. 280). Wadia Institute of Himalayan Geology. Rajpur Road Dehradun: Himachal times press.
    Vijith H, Satheesh R. 2006. GIS-based morphometric analysis of two major upland sub-watersheds of Meenachil river in Kerala. Journal of the Indian Society of Remote Sensing, 34(2): 181−185. DOI: 10.1007/BF02991823.
    Vinutha DN, Janardhana MR. 2014. Morphometry of The Payaswini Watershed, Coorg District, Karnataka, India, using remote sensing and GIS techniques. International Journal of Innovative Research in Science, Engineering and Technology, 3(5): 516–24.
    Vyas S, Singh GP. 2020. Morphometric analysis of hard rock terrain of Banne watershed, District Chattarpur, Madhya Pradesh, India using remote sensing and GIS. International Journal on Emerging Technologies, 11(2): 714−721.
    Wilson JSJ, Chandrasekar N, Magesh NS. 2012. Morphometric analysis of major sub-watersheds in Aiyar & Karai Pottanar Basin, Central Tamil Nadu, India using remote sensing & GIS techniques. Bonfring International Journal of Industrial Engineering and Management Science, 2 (Special Issue on Geospatial Technology Development in Natural Resource and Disaster Management), 08-15.
    Zhai X, Zhang Y, Zhang Y, et al. 2021. Simulating flash flood hydrographs and behavior metrics across China: Implications for flash flood management. Science of the Total Environment, 763: 142977. DOI: 10.1016/j.scitotenv.2020.142977.
  • 2305-7068/© Journal of Groundwater Science and Engineering Editorial Office. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)

  • Relative Articles

    [1] Stephen Pitchaimani V, Narayanan MSS, Abishek RS, Aswin SK, Jerin Joe RJ, 2024: Delineation of groundwater potential zones using remote sensing and Geographic Information Systems (GIS) in Kadaladi region, Southern India, Journal of Groundwater Science and Engineering, 12, 147-160.  doi: 10.26599/JGSE.2024.9280012
    [2] Ertekin Can, Ulugergerli Emin U, 2022: Geoelectrical survey over perched aquifers in the northern part of Upper Sakarya River Basin, Türkiye, Journal of Groundwater Science and Engineering, 10, 335-352.  doi: 10.19637/j.cnki.2305-7068.2022.04.003
    [3] Muthamilselvan A Dr, Sekar Anamika, Ignatius Emmanuel, 2022: Identification of groundwater potential in hard rock aquifer systems using Remote Sensing, GIS and Magnetic Survey in Veppanthattai, Perambalur, Tamilnadu, Journal of Groundwater Science and Engineering, 10, 367-380.  doi: 10.19637/j.cnki.2305-7068.2022.04.005
    [4] A Muthamilselvan, B Preethi, 2022: Spatial confirmation of termite mounds as Bio-geo indicator for groundwater occurrences using ground magnetic survey: A case study from Perambalur Region of Tamil Nadu, India, Journal of Groundwater Science and Engineering, 10, 184-195.  doi: 10.19637/j.cnki.2305-7068.2022.02.007
    [5] A Muthamilselvan, 2021: Identification of suitable sites for open and bore well using ground magnetic survey, Journal of Groundwater Science and Engineering, 9, 256-268.  doi: 10.19637/j.cnki.2305-7068.2021.03.008
    [6] Prusty Rabiranjan, Biswal Trinath, 2020: Physico-chemical, bacteriological and health hazard effect analysis of the water in Taladanda Canal, Paradip area, Odisha, India, Journal of Groundwater Science and Engineering, 8, 338-348.  doi: 10.19637/j.cnki.2305-7068.2020.04.004
    [7] Ai-min WU, Ai-bing HAO, Hai-peng GUO, Jing-tao LIU, Er-yong ZHANG, Huang WANG, Xin-feng WANG, Xue-ru WEN, Cui-guang ZHANG, 2020: Main progress and prospect for China's hydrogeological survey, Journal of Groundwater Science and Engineering, 8, 195-209.  doi: 10.19637/j.cnki.2305-7068.2020.03.001
    [8] Fatima Zahra FAQIHI, Anasse BENSLIMANE, Abderrahim LAHRACH, Mohamed CHIBOUT, Mohamed EL MOKHTAR, 2020: Recognition of the hydrogeological potential using electrical sounding in the KhemissetTiflet region, Morocco, Journal of Groundwater Science and Engineering, 8, 172-179.  doi: 10.19637/j.cnki.2305-7068.2020.02.008
    [9] A Muthamilselvan, N Rajasekaran, R Suresh, 2019: Mapping of hard rock aquifer system and artificial recharge zonation through remote sensing and GIS approach in parts of Perambalur District of Tamil Nadu, India, Journal of Groundwater Science and Engineering, 7, 264-281.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.007
    [10] WEN Xue-ru, CHENG Yan-pei, DONG Hua, WANG Chun-xiao, ZHANG Er-yong, LIU Kun, 2019: Interpretation for technical requirements of mapping regional groundwater resources, Journal of Groundwater Science and Engineering, 7, 288-294.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.009
    [11] CAO Yan-ling, CHENG Gang-jian, ZHAO Cheng-liang, WANG Tao, JIANG Hai-yang, 2018: Application of CSAMT in hydrogeology exploration in Shandong Province–An example from geothermal exploration in Changdao County (south four islands), Journal of Groundwater Science and Engineering, 6, 58-64.  doi: 10.19637/j.cnki.2305-7068.2018.01.007
    [12] HOU Guang-cai, YIN Li-he, XU Dan-dan, 2017: Hydrogeology of the Ordos Basin, China, Journal of Groundwater Science and Engineering, 5, 104-115.
    [13] CHENG Tang-pei, LIU Xing-wei, SHAO Jing-Li, CUI Ya-li, 2016: Review of the algebraic linear methods and parallel implementation in numerical simulation of groundwater flow, Journal of Groundwater Science and Engineering, 4, 12-17.
    [14] ZHAI Yuan-zheng, JIANG Shi-jie, TENG Yan-guo, WANG Jin-sheng, GU Hong-biao, XIE Liang, YIN Zhi-hua, 2015: Thirty years (1984-2014) of groundwater science teaching and research in China: A dissertation-based bibliometric survey, Journal of Groundwater Science and Engineering, 3, 222-237.
    [15] GUO Qing-shi, ZHOU Zhi-yong, GUO Si-si, HAO Ji-kun, 2014: Application Research of Remote Sensing Technology in Regional Hydrogeological Survey, Journal of Groundwater Science and Engineering, 2, 62-67.
    [16] LIU Li-jun, LIU Zhi-gang, LI Dou, ZHANG Shao-cai, CUI Qiu-ping, WANG Juan, 2014: Evaluation of groundwater supply capacity for agricultural drought emergency relief of Hebei Plain, Journal of Groundwater Science and Engineering, 2, 36-45.
    [17] SU Chen, XU Cheng-yun, CHEN Zong-yu, WEI wen, 2014: Comparison of hydrogeological characteristics between the Sanjiang Plain and the Amur River Basin, Journal of Groundwater Science and Engineering, 2, 26-34.
    [18] CHENG Yan-pei, YUE Chen, ZHANG Jian-kang, YI Qing, WEN Xue-ru, LI Yong-chao, 2014: Influence of fluctuations of frozen soil in North Asia on groundwater and assessment on resources, Journal of Groundwater Science and Engineering, 2, 71-77.
    [19] ZHAI Yuan-zheng, LEI Yan, WANG Jin-sheng, TENG Yan-guo, 2014: Tracking footprint of hydrogeology research in China via scientific projects funded by the NSFC (1997–2013), Journal of Groundwater Science and Engineering, 2, 61-70.
    [20] Tong Yuanqing, Liu Li, Wang? Xiuming, Li Yingzhi, 2013: Revision of Handbook of Hydrogeology (2nd Edition), Journal of Groundwater Science and Engineering, 1, 41-47.
  • 加载中

Catalog

    Figures(13)  / Tables(6)

    Article Metrics

    Article views (64) PDF downloads(14) Cited by()
    Proportional views
    Related

    JGSE-ScholarOne Manuscript Launched on June 1, 2024.

    Online Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return