• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ EBSCO ProQuest Scopus GeoRef AJ CNKI
Advanced Search
Volume 13 Issue 1
Mar.  2025
Turn off MathJax
Article Contents
Yao YH, Jia XF, Li ST, et al. 2025. Quantitative study on vertical distribution of heat flow in Niutuozhen geothermal field, Xiong'an New Area—Evidence from heat flow determination in the Archean of D01 well. Journal of Groundwater Science and Engineering, 13(1): 22-33 doi:  10.26599/JGSE.2025.9280036
Citation: Yao YH, Jia XF, Li ST, et al. 2025. Quantitative study on vertical distribution of heat flow in Niutuozhen geothermal field, Xiong'an New Area—Evidence from heat flow determination in the Archean of D01 well. Journal of Groundwater Science and Engineering, 13(1): 22-33 doi:  10.26599/JGSE.2025.9280036

Quantitative study on vertical distribution of heat flow in Niutuozhen geothermal field, Xiong'an New Area—Evidence from heat flow determination in the Archean of D01 well

doi: 10.26599/JGSE.2025.9280036
More Information
  • Corresponding author: jiaxiaofeng@mail.cgs.gov.cn
  • Received Date: 2024-02-05
  • Accepted Date: 2024-10-16
  • Available Online: 2025-02-10
  • Publish Date: 2025-03-10
  • The karst geothermal reservoir in Xiong'an New Area is a representative example of an ancient buried hill geothermal system. However, published heat flow data are predominantly derived from the Cenozoic sedimentary cap. Due to the limited depth of borehole exploration, heat flow measurements and analyses of the Archean crystalline basement in the study area are rare. Further investigation of the heat flow and temperature field characteristics within the Archean crystalline basement beneath the karst geothermal reservoir is necessary to understand the vertical distribution of heat flow and improve the geothermal genetic mechanism in the area. The D01 deep geothermal scientific drilling parameter well was implemented in the Niutuozhen geothermal field of Xiong'an New Area. The well exposed the entire Gaoyuzhaung Formation karst geotheremal reservoir of the Jixian system and drilled 1,723.67 m into the Archean crystalline basement, providing the necessary conditions for determining its heat flow. This study involved borehole temperature measurements and thermophysical property testing of core samples from the D01 well to analyze the vertical distribution of heat flow. The findings revealed distinct segmentation in the geothermal gradient and rock thermophysical properties. The geothermal reservoir of Gaoyuzhuang Formation is dominated by convection, with significant temperature inversions corresponding to karst fracture developments. In contrast, the Archean crystalline basement exhibits conductive heat transfer. After 233 days of static equilibrium, the average geothermal gradients of the Gaoyuzhuang Formation and the Archean crystalline basement were determined to be 1.5°C/km and 18.3°C/km, respectively. These values adjusted to −0.8°C/km and 18.2°C/km after 551 days, with the longer static time curve approaching steady-state conditions. The average thermal conductivity of dolomite in Gaoyuzhuang Formation was measured as 4.37±0.82 W/(K·m), and that of Archean gneiss as 2.41±0.40 W/(K·m). The average radioactive heat generation rate were 0.30±0.32 μW/m3 for dolomite and 1.32±0.69 μW/m3 for gneiss. Using the temperature curve after 551 days and thermal conductivity data, the Archean heat flow at the D01 well was calculated as (43.9±7.0) mW/m2, While the heat flow for the Neogene sedimentary cap was estimated at 88.6mW/m2. The heat flow of Neogene sedimentary caprock is significantly higher than that of Archean crystalline basement at the D01 well, with an excess of 44.7 mW/m2 accounting for approximately 50% of the total heat flow in the Neogene sedimentary caprock. This is primarily attributed to lateral thermal convection within the high-porosity and high-permeability karst dolomite layer, and vertical thermal convection facilitated by the Niudong fault, which collectively contribute to the heat supply of the Neogene sedimentary caprock. Thermal convection in karst fissure and fault zone contribute approximately 50% of the heat flow in the Neogene sedimentary caprock. This study quantitatively revealed the vertical distribution of heat flow, providing empirical evidence for the genetic mechanism of the convection-conduction geothermal system in sedimentary basins.
  • 加载中
  • Chen MX, Huang GS, Zhang WR, et al. 1982. The temperature distribution pattern and the utilization of geothermal water at Niutuozhen basement protrusion of central Hebei province. Chinese Journal of Geology, 17(3): 239−252. (in Chinese)
    Cui Y, Zhu CQ, Qiu NS, et al. 2019. Radioactive heat production and terrestrial heat flow in the Xiong'an Area, North China. Energies, 12(24): 4608. DOI: 10.3390/en12244608.
    Dai MG, Lei HF, Hu JG, et al. 2019. Evaluation of recoverable geothermal resources and development parameters of Mesoproterozoic thermal reservoir with the top surface depth of 3500m and shallow in Xiong'an New Area. Acta Geologica Sinica, 93(11): 2874−2888. (in Chinese) DOI: 10.19762/j.cnki.dizhixuebao.2019200.
    Furlong KP, Chapman DS. 2013. Heat flow, heat generation, and the thermal state of the lithosphere. Annual Review of Earth and Planetary Sciences, 41(1): 385−410. DOI: 10.1146/annurev.earth.031208.100051.
    Guo SS, Zhu CQ, Qiu NS, et al. 2019. Present Geothermal Characteristics and Influencing Factors in the Xiong'an New Area, North China. Energies, 12(20). DOI: 10.3390/en12203884.
    Guo SS. 2020. Present geothermal characteristics and its influencing factors in Xiong'an New Area. M. S. thesis. Beijing: China University of Petroleum: 54−58. (in Chinese) DOI: 10.27643/d.cnki.gsybu.2020.001411.
    Hao ZJ. 2021. Geothermal field characteristics and influencing factors of Niutuozhen Uplift area in Jizhong Depression. M. S. thesis. Beijing: China University of Petroleum: 44−52. (in Chinese) DOI: 10.27643/d.cnki.gsybu.2021.001474.
    He LJ, Hu SB, Huang SP, et al. 2008. Heat flow study at the Chinese Continental Scientific Drilling site: Borehole temperature, thermal conductivity, and radiogenic heat production. Journal of Geophysics Research, 113(B2). DOI: 10.1029/2007JB004958.
    He LJ, Wang JY. 2021. Concept and application of some important terms in Geothermics and Geophysics such as terrestrial heat flow. China Terminology, 23(03): 3−9. (in Chinese) DOI: 10.12339/j.issn.1673-8578.2021.03.001.
    Jiang GZ, Gao P, Rao S, et al. 2016. Compilation of heat flow data in the continental area of China (4th edition). Chinese Journal of Geophysics, 59(8): 2892−2910. (in Chinese) DOI: 10.6038/cjg20160815.
    Li WW, Rao S, Tang XY, et al. 2014. Borehole temperature logging and temperature field in the Xiongxian geothermal field, Hebei Province. Chinese Journal of Geology, 49(03): 850−863. (in Chinese) DOI: 10.3969/j.issn.0563-5020.2014.03.012.
    Liu YG, Long XT, Liu F. 2022. Tracer test and design optimization of doublet system of carbonate geothermal reservoirs. Geothermics, 105: 102533. DOI: 10.1016/j.geothermics.2022.102533.
    Norden B, Förster A, Förster H, et al. 2020. Temperature and pressure corrections applied to rock thermal conductivity: Impact on subsurface temperature prognosis and heat-flow determination in geothermal exploration. Geothermal energy (Heidelberg), 8(1): 1−19. DOI: 10.1186/s40517-020-0157-0.
    Pang ZH, Kong YL, Pang JM, et al. 2017. Geothermal resources and development in Xiong'an New Area. Bulletin of Chinese Academy of Sciences, 32(11): 1224−1230. (in Chinese) DOI: 10.16418/j.issn.1000-3045.2017.11.007.
    Pang ZH, Pang JM, Kong YL, et al. 2020. Large-scale karst thermal storage identification method and large-scale sustainable mining technology. Science and Technology for Development, 16(Z1): 299−306. (in Chinese) DOI: 10.11842/chips.20200516001.
    Pribnow D, Williams CF, Sass JH, et al. 1996. Thermal conductivity of water-saturated rocks from the KTB Pilot Hole at temperatures of 25 to 300°C. Geophysical Research Letters, 23(4): 391−394. DOI: 10.1029/95GL00253.
    Rao S, Luo Y, Huang SD, et al. 2024. Heat accumulation effect of groundwater convective activity in karst geotherma reservoir in Jizhong Depression, Bohai Bay Basin. Chinese Journal of Geophysics, 67(08): 3075−3088. (in Chinese) DOI: 10.6038/cig2024S0016.
    Rybach L. 1988. Determination of heat production rate, in handbook of terrestrial heat flow density determination, edited by R. Haenel et al. Kluwer Acad., Dordrecht, Netherlands: 125−142.
    Sass JH, Lachenbruch AH, Moses TH, et al. 1992. Heat flow from a scientific research well at Cajon Pass, California. Journal of Geophysical Research, 97(B4): 5017−5030. DOI: 10.1029/91JB01504.
    Seipold U, Huenges E. 1998. Thermal properties of gneisses and amphibolites — high pressure and high temperature investigations of KTB-rock samples. Tectonophysics, 291(1): 173−178. DOI: 10.1016/S0040-1951(98)00038-9
    Sun JX, Yue GF, Zhang W. 2023. Simulation of thermal breakthrough factors affecting carbonate geothermal-to-well systems. Journal of Groundwater Science and Engineering, 11(4): 379−390. DOI: 10.26599/JGSE.2023.9280030.
    Wang GL, Li J, Wu AM, et al. 2018a. A study of the thermal storage characteristics of Gaoyuzhuang Formation, A new layer system of thermal reservoir in Rongcheng uplift area, Hebei province. Acta Geoscientica Sinica, 39(05): 533−541. (in Chinese) DOI: 10.3975/cagsb.2018.071901.
    Wang GL, Liu YG, Duan HX, et al. 2023a. Crust-mantle differentiation and thermal accumulation mechanisms in the north China plain. Renewable Energy, 213: 63−74. DOI: 10.1016/j.renene.2023.05.136.
    Wang GL, Wang WL, Zhang W, et al. 2020. The status quo and prospect of geothermal resources exploration and development in Beijing-Tianjin-Hebei region in China. China Geology, 3(1): 173−181. DOI: 10.31035/cg2020013.
    Wang JY, Huang SP. 1988. Compilation of heat flow data in the China Continental area. Chinese Journal of Geology (Scientia Geologica Sinica), 23(2): 196−204. (in Chinese)
    Wang K, Zhang J, Bai DW, et al. 2021a. Geothermal-geological model of Xiong'an New Area: Evidence from geophysics. Geology in China, 48(05): 1453−1468. (in Chinese) DOI: 10.12029/gc20210511.
    Wang K. 2022. Study on the geothermal geological structure and deep geothermal source mechanism of Xiong'an New Area based on comprehensive geophysical exploration. Ph. D. thesis. Chang Chun: Jilin University: 117−122. (in Chinese) DOI: 10.27162/d.cnki.gjlin.2022.007525.
    Wang SF, Liu JR, Sun Y, et al. 2018b. Study on the geothermal production and reinjection mode in Xiong County. Journal of Groundwater Science and Engineering, 6(3): 178−186. DOI: 10.19637/j.cnki.2305-7068.2018.03.003.
    Wang XW, Guo SY, Gao NA, et al. 2023b. Detection of carbonate geothermal reservoir in Niudong fault zone of Xiong'an New Area and its geothermal exploration significance. Geological Bulletin of China, 42(1): 14−26. (in Chinese) DOI: 10.12097/j.issn.1671-2552.2023.01.002.
    Wang ZT, Gao P, Jiang GZ, et al. 2021b. Heat flow correction for the high-permeability formation: A Case Study for Xiong'an New Area. Lithosphere, 2021(Special 5). DOI:  10.2113/2021/9171191
    Wang ZT, Hu SB, Wang YB, et al. 2022. Influence of the groundwater convection within the high permeability formation on the overlying temperature field in Niutuozhen uplift. Chinese Journal of Geophysics, 65(2): 726−736. (in Chinese) DOI: 10.6038/cjg2022P0341.
    Wang ZT, Jiang GZ, Zhang C, et al. 2019a. Thermal regime of the lithosphere and geothermal potential in Xiong'an New Area. Energy Exploration & Exploitation, 37(2): 787−810. DOI: 10.1177/0144598718778163.
    Wang ZT, Zhang C, Jiang GZ, et al. 2019b. Present-day geothermal field of Xiong'an New Area and its heat source mechanism. Chinese Journal of Geophysics, 62(11): 4313−4322. (in Chinese) DOI: 10.6038/cig2019M0326.
    Wollenberg HA, Smith AR. 1987. Radiogenic heat production of crustal rocks: An assessment based on geochemical data. Geophysical Research Letters, 14(3): 295−298. DOI: 10.1029/GL014i003p00295.
    Wu AM, Ma F, Wang GL, et al. 2018. A study of deep-seated karst geothermal reservoir exploration and huge capacity geothermal well parameters in Xiongan New Area. Acta Geoscientica Sinica, 39(05): 523−532. (in Chinese) DOI: 10.3975/cagsb.2018.071104.
    Wang YB, Liu SW, Chen CQ, et al. 2024. Compilation of terrestrial heat flow data in continental China (5th edition). Chinese Journal of Geophysics, 67(11): 4233−4265. (in Chinese) DOI: 10.6038/cjg2024S0284.
    Xing YF, Wang HQ, Li J, et al. 2022. Chemical field of geothermal water in Xiong'an New Area and analysis of influencing factors. Geology in China, 49(06): 1711−1722. (in Chinese) DOI: 10.12029/gc20220601.
    Yao YH, Jia XF, Li ST, et al. 2022. Heat flow determination of Archean strata under the karst thermal reservoir of D01 well in Xiong'an New Area. Geology in China, 49(6): 1723−1731. (in Chinese) DOI: 10.12029/gc20220602.
  • 2305-7068/© Journal of Groundwater Science and Engineering Editorial Office. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)

  • Relative Articles

    [1] Xin Wang, Guo-qiang Zhou, Yan-guang Liu, Ying-nan Zhang, Mei-hua Wei, Kai Bian, 2024: Research progress on temperature field evolution of hot reservoirs under low-temperature tailwater reinjection, Journal of Groundwater Science and Engineering, 12, 205-222.  doi: 10.26599/JGSE.2024.9280016
    [2] Meng-lei Ji, Shuai-chao Wei, Wei Zhang, Feng Liu, Yu-zhong Liao, Ruo-xi Yuan, Xiao-xue Yan, Long Li, 2024: Characterization of rock thermophysical properties and factors affecting thermal conductivity−A case study of Datong Basin, China, Journal of Groundwater Science and Engineering, 12, 4-15.  doi: 10.26599/JGSE.2024.9280002
    [3] Yi-hang Gao, Jun-hui Shen, Lin Chen, Xiao Li, Shuang Jin, Zhen Ma, Qing-hua Meng, 2023: Influence of underground space development mode on the groundwater flow field in Xiong’an new area, Journal of Groundwater Science and Engineering, 11, 68-80.  doi: 10.26599/JGSE.2023.9280007
    [4] Jia-xing Sun, Gao-fan Yue, Wei Zhang, 2023: Simulation of thermal breakthrough factors affecting carbonate geothermal-to-well systems, Journal of Groundwater Science and Engineering, 11, 379-390.  doi: 10.26599/JGSE.2023.9280030
    [5] Yu-kun Sun, Feng Liu, Hua-jun Wang, Xin-zhi Gao, 2022: Numerical simulation of operation performance on production and injection of a double well geothermal system in Kailu Basin, Inner Mongolia, Journal of Groundwater Science and Engineering, 10, 196-208.  doi: 10.19637/j.cnki.2305-7068.2022.02.008
    [6] Chun-lei Liu, Chen-ming Lu, Ya-song Li, Qi-chen Hao, Sheng-wei Cao, 2022: Genetic model and exploration target area of geothermal resources in Hongtang Area, Xiamen, China, Journal of Groundwater Science and Engineering, 10, 128-137.  doi: 10.19637/j.cnki.2305-7068.2022.02.003
    [7] Shuai-chao Wei, Feng Liu, Wei Zhang, Gui-ling Wang, Ruo-xi Yuan, Yu-zhong Liao, Xiao-xue Yan, 2022: Research on the characteristics and influencing factors of terrestrial heat flow in Guizhou Province, Journal of Groundwater Science and Engineering, 10, 166-183.  doi: 10.19637/j.cnki.2305-7068.2022.02.006
    [8] Yan WANG, Yan-guang LIU, Kai BIAN, Hong-liang ZHANG, Shen-jun QIN, Xiao-jun WANG, 2020: Seepage-heat transfer coupling process of low temperature return water injected into geothermal reservoir in carbonate rocks in Xian County, China, Journal of Groundwater Science and Engineering, 8, 305-314.  doi: 10.19637/j.cnki.2305-7068.2020.04.001
    [9] NAN Tian, GUO Si-jia, 2019: Influence of borehole quantity and distribution on lithology field simulation, Journal of Groundwater Science and Engineering, 7, 295-308.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.001
    [10] ZHOU Bo, WEI Shan-ming, WANG Tao, NIE Yu-peng, WANG Chuan-qi, 2019: Discussion on establishing monitoring networks for temperature fields of shallow thermal energy in Shandong, China, Journal of Groundwater Science and Engineering, 7, 86-93.  doi: 10.19637/j.cnki.2305-7068.2019.01.009
    [11] MAO Xiao-ping, LI Ke-wen, WANG Xin-wei, 2019: Causes of geothermal fields and characteristics of ground temperature fields in China, Journal of Groundwater Science and Engineering, 7, 15-28.  doi: 10.19637/j.cnki.2305-7068.2019.01.002
    [12] LIU Yan-guang, LIU Bing, LU Chuan, ZHU Xi, WANG Gui-ling, 2017: Reconstruction of deep fluid chemical constituents for estimation of geothermal reservoir temperature using chemical geothermometers, Journal of Groundwater Science and Engineering, 5, 173-181.
    [13] GAN Hao-nan, LIN Wen-jing, YUE Gao-fan, WANG Xiao, MA Feng, WANG Gui-ling, 2017: Research on the fault controlling mechanism of geothermal water in Zhangzhou Basin, Journal of Groundwater Science and Engineering, 5, 326-335.
    [14] MA Zhi-yuan, XU Yong, ZHAI Mei-jing, WU Min, 2017: Clogging mechanism in the process of reinjection of used geothermal water: A simulation research on Xianyang No.2 reinjection well in a super-deep and porous geothermal reservoir, Journal of Groundwater Science and Engineering, 5, 311-325.
    [15] ZHANG Pei-feng, 2016: Thermal stresses analysis of casing string used in enhanced geothermal systems wells, Journal of Groundwater Science and Engineering, 4, 293-300.
    [16] FENG Guan-hong, XU Tian-fu, ZHU Hui-xing, 2016: Dynamics of fluid and heat flow in a CO2-based injection-production geothermal system, Journal of Groundwater Science and Engineering, 4, 377-388.
    [17] Wang Bin, LI Bai-xiang, LI Fu-cheng, 2015: Discussion on heat source mechanism and geothermal system of Qinghai Gonghe-Guide Basin, Journal of Groundwater Science and Engineering, 3, 86-97.
    [18] SHANG Xiao-gang, YU Xiang-hui, LI Cheng-ying, CHAI Hui-peng, JIANG Nan-jie, 2015: Geochemical characteristics of geothermal water in Weiyuan geothermal field, Huzhu County, Qinghai Province, Journal of Groundwater Science and Engineering, 3, 59-69.
    [19] Patsakron Assiri, 2013: Artesian Flowing Wells Field of Phu Tok Aquifer, Journal of Groundwater Science and Engineering, 1, 95-98.
    [20] Zong-jun Gao, Yong-gui Liu, 2013: Groundwater Flow Driven by Heat, Journal of Groundwater Science and Engineering, 1, 22-27.
  • 加载中

Catalog

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (13) PDF downloads(2) Cited by()
    Proportional views
    Related

    JGSE-ScholarOne Manuscript Launched on June 1, 2024.

    Online Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return