• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ EBSCO ProQuest Scopus GeoRef AJ CNKI
Advanced Search
Volume 13 Issue 2
Jun.  2025
Turn off MathJax
Article Contents
Shao YX, Zhang W, Chen WB, et al. 2025. Causes and health risk assessment of fluorine in the Red bed groundwater and adjacent geothermal water of the Guang'an Area, Southwest China. Journal of Groundwater Science and Engineering, 13(2): 116-132 doi:  10.26599/JGSE.2025.9280043
Citation: Shao YX, Zhang W, Chen WB, et al. 2025. Causes and health risk assessment of fluorine in the Red bed groundwater and adjacent geothermal water of the Guang'an Area, Southwest China. Journal of Groundwater Science and Engineering, 13(2): 116-132 doi:  10.26599/JGSE.2025.9280043

Causes and health risk assessment of fluorine in the Red bed groundwater and adjacent geothermal water of the Guang'an Area, Southwest China

doi: 10.26599/JGSE.2025.9280043
More Information
  • Understanding the levels, causes, and sources of fluoride in groundwater is critical for public health, effective water resource management, and sustainable utilization. This study employs multivariate statistical methods, hazard quotient assessment, and geochemical analyses, such as mineral saturation index, ionic activities, and Gibbs diagrams, to investigate the hydrochemical characteristics, causes, and noncarcinogenic risks of fluoride in Red bed groundwater and geothermal water in the Guang'an area and neighboring regions. Approximately 9% of the Red bed groundwater samples contain fluoride concentrations exceeding 1 mg·L−1. The predominant water types identified are Cl-Na and HCO3-Na, primarily influenced by evapotranspiration. Low-fluoride groundwater and high-fluoride geothermal water exhibit distinct hydrochemical types HCO3-Ca and SO4-Ca, respectively, which are mainly related to the weathering of carbonate, sulfate, and fluorite-containing rocks. Correlation analysis reveals that fluoride content in Red bed groundwater is positively associated with Na+, Cl, SO42−, and TDS (r2 = 0.45–0.64, p < 0.01), while in geothermal water, it correlates strongly with pH, K+, Ca2+, and Mg2+ (r2 = 0.52–0.80, p < 0.05). Mineral saturation indices and ionic activities indicate that ion exchange processes and the dissolution of minerals such as carbonatite and fluorite are important sources of fluoride in groundwater. The enrichment of fluorine in the Red bed groundwater is linked to evaporation, cation exchange and dissolution of fluorite, caused by the lithologic characteristics of the red bed in this area. However, it exhibits minimal correlation with the geothermal water in the adjacent area. The noncarcinogenic health risk assessment indicates that 7% (n = 5) of Red bed groundwater points exceed the fluoride safety limit for adults, while 12% (n = 8) exceed the limit for children. These findings underscore the importance of avoiding highly fluoridated red bed groundwater as a direct drinking source and enhancing groundwater monitoring to mitigate health risks associated with elevated fluoride levels.
  • 加载中
  • Aghapour S, Bina B, Tarrahi MJ, et al. 2018. Distribution and health risk assessment of natural fluoride of drinking groundwater resources of Isfahan, Iran, using GIS. Environmental Monitoring and Assessment, 190: 137. DOI: 10.1007/s10661-018-6467-z.
    Ali S, Thakur SK, Sarkar A, et al. 2016. Worldwide contamination of water by fluoride. Environmental Chemistry Letters, 14(3): 563−568. DOI: 10.1007/s10311-016-0563-5.
    Chae GT, Yun ST, Mayer B, et al. 2007. Fluorine geochemistry in bedrock groundwater of South Korea. Science of the Total Environment, 385(1-3): 272−283. DOI: 10.1016/j.scitotenv.2007.06.038.
    Chen JN, Mao XG, Shi YH, et al. 2020. Study on the late Cretaceous paleoenvironment documented by red beds in the western Fujian province. Chinese Journal of Geophysics, 63(4): 1553−1568. DOI: 10.6038/cjg2020N0375.
    Dey RK, Swain SK, Mishra S, et al. 2012. Hydrogeochemical processes controlling the high fluoride concentration in groundwater: A case study at the Boden block area, Orissa, India. Environmental Monitoring and Assessment, 184(5): 3279−3291. DOI: 10.1007/s10661-011-2188-2.
    Dong JX, Sun D, Wei LS, et al. 2021. Discussion on the development regularity of salt water in red beds in the southern margin of Sichuan Basin. Geological Bulletin of China, 40(8): 1394−1401. (in Chinese)
    Duan X. 2015. Highlights of the Chinese exposure factors handbook (adults). Academic Press. (in Chinese)
    Durrani TS, Farooqi A. 2021. Groundwater fluoride concentrations in the watershed sedimentary basin of Quetta Valley, Pakistan. Environmental monitoring and assessment, 193(10): 644. DOI: 10.1007/s10661-021-09365-8.
    Feng F, Jia YF, Yang Y, et al. 2020. Hydrogeochemical and statistical analysis of high fluoride groundwater in northern China. Environmental Science and Pollution Research, 27(28): 34840−34861. DOI: 10.1007/s11356-020-09784-z.
    Gao ZJ, Zhu ZH, Liu XD, et al. 2014. The formation and model of high fluoride groundwater and in-situ dispelling fluoride assumption in Gaomi City of Shandong Province. Journal of Groundwater Science and Engineering, 2(2): 34−39. DOI: 10.26599/JGSE.2014.9280016.
    Gibbs RJ. 1970. Mechanisms controlling world water chemistry. Science, 170(3962): 1088−1090. DOI: 10.1126/science.170.3962.1088.
    Güler C, Thyne GD. 2004. Delineation of hydrochemical facies distribution in a regional groundwater system by means of fuzzy c-means clustering. Water Resources Research, 40(12): W12503. DOI: 10.1029/2004wr003299.
    Hao AB, Zhang YL, Zhang EY, et al. 2018. Review: Groundwater resources and related environmental issues in China. Hydrogeology Journal, 26(5): 1325−1337. DOI: 10.1007/s10040-018-1787-1.
    He XD, Li PY, Ji YJ, et al. 2020. Groundwater Arsenic and Fluoride and Associated Arsenicosis and Fluorosis in China: Occurrence, Distribution and Management. Exposure and Health, 12(3): 355−368. DOI: 10.1007/s12403-020-00347-8.
    Jacks G, Bhattacharya P, Chaudhary V, et al. 2005. Controls on the genesis of some high-fluoride groundwaters in India. Applied Geochemistry, 20(2): 221−228. DOI: 10.1016/j.apgeochem.2004.07.002.
    Jia H, Qian H, Qu W, et al. 2019. Fluoride occurrence and human health risk in drinking water wells from southern edge of Chinese Loess Plateau. International Journal of Environmental Research and Public Health, 16(10): 1683−1695. DOI: 10.3390/ijerph16101683.
    Kammoun A, Abidi M, Zairi M. 2022. Hydrochemical characteristics and groundwater quality assessment for irrigation and drinking purposes: A case of Enfidha aquifer system, Tunisia. Environmental Earth Sciences, 81(41): 1−10. DOI: 10.1007/s12665-021-10163-1.
    Khatri N, Tyagi S. 2015. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Frontiers in Life Science, 8(1): 23−39. DOI: 10.1080/21553769.2014.933716.
    Kumar M, Goswami R, Patel AK, et al. 2020. Scenario, perspectives and mechanism of arsenic and fluoride Co-occurrence in the groundwater: A review. Chemosphere, 249(12): 2−20. DOI: 10.1016/j.chemosphere.2020.126126.
    Lan FN, Zhao Y, Li J, et al. 2024. Health risk assessment of heavy metal pollution in groundwater of a karst basin, SW China. Journal of Groundwater Science and Engineering, 12(1): 49−61. DOI: 10.26599/jgse.2024.9280005.
    Lei FH, Liu CZ. 2022. Report of geochemical survey of land quality in Guang'an City: Chengdu Geological Survey Center, China Geological Survey. (in Chinese)
    Li CC, Gao XB, Wang YX. 2015. Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China. Science of the Total Environment, 508(1): 155−165. DOI: 10.1016/j.scitotenv.2014.11.045.
    Li MH, Yuan JF, Huang CJ, et al. 2020. A study of the characteristics of geothermal reservoir and genesis of thermal groundwater in the Tongluoshan anticline near Guang'an in east Sichuan. Hydrogeology & Engineering Geology, 47(6): 36−46. (in Chinese) DOI: 10.16030/j.cnki.issn.1000-3665.202008038.
    Lia Q, Tao HF, Aihemaiti M, et al. 2021. Spatial distribution characteristics and enrichment factors of high-fluorine groundwater in the Kuitun River Basin of Xinjiang Uygur Autonomous Region in China. Desalination and Water Treatment, 223: 208−217. DOI: 10.5004/dwt.2021.27138.
    Liu RP, Liu F, Chen HQ, et al. 2024. Arsenic and fluoride co-enrichment of groundwater in the loess areas and associated human health risks: A case study of Dali County in the Guanzhong Basin. China Geology, 7(3): 445−459. DOI: 10.31035/cg2024015.
    Liu RP, Zhu H, Liu F, et al. 2021. Current situation and human health risk assessment of fluoride enrichment in groundwater in the Loess Plateau: A case study of Dali County, Shaanxi Province, China. China Geology, 4(3): 487−497. DOI: 10.31035/cg2021051.
    Lyu XL, Liu JT, Zhou B, et al. 2021. Distribution characteristics and enrichment mechanism of fluoride in the shallow aquifer of the Tacheng Basin. Earth Science Frontiers, 28(2): 426−436. (in Chinese) DOI: 10.13745/j.esf.sf.2020.10.29.
    Luo JL. 2020. Regional distribution characteristies and genesis analysis of fluorinecontent in groundwater in South Jiangxi. Mineral Resources and Geology, 34(3): 590−595. (in Chinese) DOI: 10.19856/j.cnki.issn.1001-5663.2020.03.026.
    Mao RY, Cuo HM, Jia YF. 2016. Distribution characteristics and genesis of fluoride groundwater in the Hetao basin, Inner Mongolia. Earth Science Frontiers, 23(2): 260−268. (in Chinese) DOI: 10.13745/j.esf.2016.02.024.
    Piper M. 1944. A graphic procedure in the geochemical interpretation of water-analyses. Transactions-American Geophysical Union, 25(6): 914−923. DOI: 10.1029/TR025i006p00914.
    Podgorski J, Berg M. 2022. Global analysis and prediction of fluoride in groundwater. Nature Communications, 13(1): 4232. DOI: 10.1038/s41467-022-31940-x.
    Qian LJ, Chen HD, Lin LB, et al. 2012. Geochemical characteristics and environmental implications of Middle Jurassic Shaximiao Formation, western margin of Sichuan Basin. Acta Sedimentologica Sinica, 30(6): 1061−1071. (in Chinese) DOI: 10.14027/j.cnki.cjxb.2012.06.020.
    Schoeller H. 1967. Qualitative evaluation of groundwater resources. In methods and technics of groundwater investigation and development. Water Research, 33: 44−52.
    Sheldon ND. 2005. Do red beds indicate paleoclimatic conditions? A Permian case study. Palaeogeography, Palaeoclimatology, Palaeoecology, 228(3-4): 305–319. DOI: 10.1016/j.palaeo.2005.06.009.
    Sikdar PK, Sarkar SS, Palchoudhury S. 2001. Geochemical evolution of groundwater in the Quaternary aquifer of Calcutta and Howrah, India. Journal of Asian Earth Sciences, 19(5): 579−594. DOI: 10.1016/s1367-9120(00)00056-0.
    Silva GM, Liang X, Kontogeorgis GM. 2022. On the derivations of the Debye–Hückel equations. Molecular Physics, 120(10): 1−22. DOI: 10.1080/00268976.2022.2064353.
    Su H, Kang WD, Kang N, et al. 2021. Hydrogeochemistry and health hazards of fluoride-enriched groundwater in the Tarim Basin, China. Environmental Research, 200(3): 111−130. DOI: 10.1016/j.envres.2021.111476.
    USEPA. 1987. Integrated Risk Information System, Chemical Assessment Summary, Fluorine (soluble fluoride); CASRN 7782-41-4. Available on https://iris.epa.gov/static/pdfs/0053_summary.pdf.
    Wedepohl KH. 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta, 59(7): 1217−1232. DOI: 10.1016/0016-7037(95)00038-2.
    Wen DG, Zhang FC, Zhang EY, et al. 2013. Arsenic, fluoride and iodine in groundwater of China (Review). Journal of Geochemical Exploration, 135: 1−21. DOI: 10.1016/j.gexplo.2013.10.012.
    Xiao J, Zhang F, Jin ZD. 2016. Spatial characteristics and controlling factors of chemical weathering of loess in the dry season in the middle Loess Plateau, China. Hydrological Processes, 30(25): 4855−4869. DOI: 10.1002/hyp.10959.
    Xiao Q, Shen LC, Yuan DX, et al. 2011. Using δ18O and δ34S isotopic techniques to trace the recycling process of hot springs in Chongqing metropolitan. Journal of Chongqing University, 34(5): 89−94. (in Chinese) DOI: 10.11835/j.issn.1000-582X.2011.05.016.
    Xie YX, Tan KO, Zuo ZH. 1981. Report on the hydrogeological survey of the Guang'an amplitude region: Nanjiang Hydrogeological Brigade of Sichuan Geological Bureau. (in Chinese)
    Xing SP, Wu P, Hu XD, et al. 2023. Ceochemical characteristics of aquifer sediments and their influence on fluoride enrichment in groundwater in the Hualong-Xunhua Basin. Earth Science Frontiers, 30(2): 526−538. (in Chinese) DOI: 10.13745/j.esf.sf.2022.9.10.
    Yan ZX, Feng MG. 2022. Hydrochemical characteristics and driving factors of surface water in the mining area of Changhe River Basin. Environmental Chemistry, 41(2): 632−642. (in Chinese) DOI: 10.7524/j.issn.0254-6108.2020101505.
    Zhang LQ, Dong DL, Lv S, et al. 2023. Spatial evolution analysis of groundwater chemistry, quality, and fluoride health risk in southern Hebei Plain, China. Environmental Science and Pollution Research, 30(21): 32−51. DOI: 10.1007/s11356-023-26316-7.
    Zhang MH, Zhou SY, Liu DD, et al. 2024. Characteristics and genesis of groundwater salinization in coastal areas of the Lower Reaches of Oujiang Basin. Journal of Groundwater Science and Engineering, 12(2): 190−204. DOI: 10.26599/jgse.2024.9280015.
    Zhang W, Hao CM, Lin DJ, et al. 2021. Study on the fluorine distribution and formation of high fluorine middle-level groundwater in Sulin mining area, Anhui. Environmental Pollution and Control, 43(8): 1022−1027. (in Chinese) DOI: 10.15985/j.cnki.1001-3865.2021.08.017.
    Zhang YT, Wu JH, Xu B. 2018. Human health risk assessment of groundwater nitrogen pollution in Jinghui canal irrigation area of the loess region, northwest China. Environmental Earth Sciences, 77(7): 1. DOI: 10.1007/s12665-018-7456-9.
    Zhang ZX, Xu M, Zhang Q, et al. 2018. Hydrogeochemistry, genesis and water quality analysis of shallow groundwater in red-bed area of the Mianyang city. Science Technology and Engineering, 18(3): 168−173. (in Chinese)
    Zhao X, Duan X, Wang B, et al. 2016. Environmental exposure related activity patterns survey of Chinese population (Children). China: Beijing: China Environmental Science Press. (in Chinese)
    Zhou YZ, Zeng YY, Zhou JL, et al. 2016. Distribution of groundwater arsenic in Xinjiang, P. R. China. Applied Geochemistry, 77(2): 116−125. DOI: 10.1016/j.apgeochem.2016.09.005.
    Zhu YP, Su CL, Liang C, et al. 2015. Effects of sediment lithology and groundwater hydrochemical characteristics on fluorine transport at water soil interface. Geological Science and Technology Information, 34(5): 160−165. (in Chinese)
  • 2305-7068/© Journal of Groundwater Science and Engineering Editorial Office. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)

  • Relative Articles

    [1] Ming-xiao Yu, Xi Zhu, Gui-ling Wang, Wei Zhang, Feng Ma, 2025: Zoning of development and utilization and evaluation of deep geothermal resources in Xiong'an New Area, Journal of Groundwater Science and Engineering, 13, 47-61.  doi: 10.26599/JGSE.2025.9280038
    [2] Mei Han, Wei Zhang, Na Jia, Ke Li, Chen-ling Zhang, Jia Liu, Xiang-ke Kong, 2025: Rapid determination of Ferrum, Manganese, Strontium and Barium in geothermal water by ICP-OES, Journal of Groundwater Science and Engineering, 13, 170-179.  doi: 10.26599/JGSE.2025.9280047
    [3] Masoud H Hamed, Rebwar N Dara, Marios C Kirlas, 2024: Groundwater vulnerability assessment using a GIS-based DRASTIC method in the Erbil Dumpsite area (Kani Qirzhala), Central Erbil Basin, North Iraq, Journal of Groundwater Science and Engineering, 12, 16-33.  doi: 10.26599/JGSE.2024.9280003
    [4] Fu-ning Lan, Yi Zhao, Jun Li, Xiu-qun Zhu, 2024: Health risk assessment of heavy metal pollution in groundwater of a karst basin, SW China, Journal of Groundwater Science and Engineering, 12, 49-61.  doi: 10.26599/JGSE.2024.9280005
    [5] Chun-lei Liu, Chen-ming Lu, Ya-song Li, Qi-chen Hao, Sheng-wei Cao, 2022: Genetic model and exploration target area of geothermal resources in Hongtang Area, Xiamen, China, Journal of Groundwater Science and Engineering, 10, 128-137.  doi: 10.19637/j.cnki.2305-7068.2022.02.003
    [6] Hui-feng Yang, Rui-fang Meng, Xi-lin Bao, Wen-geng Cao, Ze-yan Li, Bu-yun Xu, 2022: Assessment of water level threshold for groundwater restoration and over-exploitation remediation the Beijing-Tianjin-Hebei Plain, Journal of Groundwater Science and Engineering, 10, 113-127.  doi: 10.19637/j.cnki.2305-7068.2022.02.002
    [7] Khan Tanzeel, Akhtar Malik Muhammad, Malghani Gohram, Akhtar Rabia, 2022: Comparative analysis of bacterial contamination in tap and groundwater: A case study on water quality of Quetta City, an arid zone in Pakistan, Journal of Groundwater Science and Engineering, 10, 153-165.  doi: 10.19637/j.cnki.2305-7068.2022.02.005
    [8] Prusty Rabiranjan, Biswal Trinath, 2020: Physico-chemical, bacteriological and health hazard effect analysis of the water in Taladanda Canal, Paradip area, Odisha, India, Journal of Groundwater Science and Engineering, 8, 338-348.  doi: 10.19637/j.cnki.2305-7068.2020.04.004
    [9] Abdelhakim LAHJOUJ, Abdellah EL HMAIDI, Karima BOUHAFA, 2020: Spatial and statistical assessment of nitrate contamination in groundwater: Case of Sais Basin, Morocco, Journal of Groundwater Science and Engineering, 8, 143-157.  doi: 10.19637/j.cnki.2305-7068.2020.02.006
    [10] MAO Xiao-ping, LI Ke-wen, WANG Xin-wei, 2019: Causes of geothermal fields and characteristics of ground temperature fields in China, Journal of Groundwater Science and Engineering, 7, 15-28.  doi: 10.19637/j.cnki.2305-7068.2019.01.002
    [11] SHU Qin-feng, WEI Liang-shuai, LI Xiao, 2019: Geological characteristics and analysis of hydrothermal genesis in the Suijiang-1 well in Yunnan Province, China, Journal of Groundwater Science and Engineering, 7, 53-60.  doi: 10.19637/j.cnki.2305-7068.2019.01.005
    [12] MA Bai-heng, LIU Shuo, WANG Xin-zhou, ZHAI Xing, LI Hong-chao, LI Chen-xi, 2018: A preliminary study on the spatial distribution characteristics and causes of strontium-rich mineral water in the Dushan complex, Journal of Groundwater Science and Engineering, 6, 115-125.  doi: 10.19637/j.cnki.2305-7068.2018.02.005
    [13] LIN Dan, JIN Meng-gui, LI Xiu-juan, 2017: Risk assessment of heavy metals in topsoil along the banks of theYangtze River in Huangshi, China, Journal of Groundwater Science and Engineering, 5, 162-172.
    [14] LIU Shu-yuan, WANG Hong-qi, 2016: Dynamic assessment of pollution risk of groundwater source area in Northern China, Journal of Groundwater Science and Engineering, 4, 333-343.
    [15] ZHANG Chuan-mian, GUO Xiao-niu, Richard Henry, James Dendy, 2015: Groundwater modelling to help diagnose contamination problems, Journal of Groundwater Science and Engineering, 3, 285-294.
    [16] YANG Li-zhi, LIU Chun-hua, 2015: Study on the characteristics and causes of carbon tetrachloride pollution of karst water in eastern suburbs of Jinan, Journal of Groundwater Science and Engineering, 3, 331-341.
    [17] GUO Qing-hai, ZHANG Xiao-bo, LIU Ming-liang, LI Jie-xiang, ZHOU Chao, ZHANG Can-hai, ZHU Ming-cheng, ZHANG Xiao-bo, GUO Wei, WANG Yan-xin, 2015: Geochemical genesis of geothermal waters from the Longling hydrothermal area, Yunnan, Southwestern China, Journal of Groundwater Science and Engineering, 3, 213-221.
    [18] SHI Jian-sheng, LIU Chang-li, DONG Hua, YAN Zhen-peng, WANG Yan-jun, LIU Xin-hao, GUO Xiu-yan, JIAO Hong-jun, YIN Mi-ying, HOU Huai-ren, 2014: Stability assessment and risk analysis of aboveground river in lower Yellow River, Journal of Groundwater Science and Engineering, 2, 1-18.
    [19] GAO Zong-jun, ZHU Zhen-hui, LIU Xiao-di, XU Yan-lan, 2014: The Formation and Model of High Fluoride Groundwater and In-situ Dispelling Fluoride Assumption in Gaomi City of Shandong Province, Journal of Groundwater Science and Engineering, 2, 34-39.
    [20] Zhao-xian Zheng, Xiao-si Su, 2013: Risk Assessment on Organic Contamination of Shallow Groundwater of an Oilfield in Northeast China, Journal of Groundwater Science and Engineering, 1, 75-82.
  • 加载中

Catalog

    Figures(11)  / Tables(4)

    Article Metrics

    Article views (128) PDF downloads(21) Cited by()
    Proportional views
    Related

    JGSE-ScholarOne Manuscript Launched on June 1, 2024.

    Online Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return