• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ EBSCO ProQuest Scopus GeoRef AJ CNKI
Advanced Search
Volume 13 Issue 2
Jun.  2025
Turn off MathJax
Article Contents
Zhang ZY, Xu D, Gong CC, et al. 2025. Finite analytic method for simulating water flow using water content-based Richards' equation. Journal of Groundwater Science and Engineering, 13(2): 147-155 doi:  10.26599/JGSE.2025.9280045
Citation: Zhang ZY, Xu D, Gong CC, et al. 2025. Finite analytic method for simulating water flow using water content-based Richards' equation. Journal of Groundwater Science and Engineering, 13(2): 147-155 doi:  10.26599/JGSE.2025.9280045

Finite analytic method for simulating water flow using water content-based Richards' equation

doi: 10.26599/JGSE.2025.9280045
More Information
  • Corresponding author: gcc895470127@163.com
  • Received Date: 2024-04-22
  • Accepted Date: 2025-03-26
  • Available Online: 2025-05-10
  • Publish Date: 2025-06-30
  • Accurately simulating water flow movement in vadose zone is crucial for effective water resources assessment. Richards' equation, which describes the movement of water flow in the vadose zone, is highly nonlinear and challenging to solve. Existing numerical methods often face issues such as numerical dispersion, oscillation, and mass non-conservation when spatial and temporal discretization conditions are not appropriately configured. To address these problems and achieve accurate and stable numerical solutions, a finite analytic method based on water content-based Richards' equation (FAM-W) is proposed. The performance of the FAM-W is compared with analytical solutions, Finite Difference Method (FDM), and Finite Analytic Method based on the pressure Head-based Richards' equation (FAM-H). Compared to analytical solution and other numerical methods (FDM and FAM-H), FAM-W demonstrates superior accuracy and efficiency in controlling mass balance errors, regardless of spatial step sizes. This study introduces a novel approach for modelling water flow in the vadose zone, offering significant benefits for water resources management.
  • 加载中
  • Berardi M, Difonzo FV. 2022. A quadrature-based scheme for numerical solutions to Kirchhoff transformed Richards' equation. Journal of Computational Dynamics, 9: 69−84. DOI: 10.3934/jcd.2022001.
    Berardi M, Difonzo FV, Guglielmi R. 2023a. A preliminary model for optimal control of moisture content in unsaturated soils. Computational Geosciences, 27: 1133−1144. DOI: 10.1007/s10596-023-10250-1.
    Berardi M, Difonzo FV, Pellegrino SF. 2023b. A numerical method for a nonlocal form of Richards' equation based on peridynamic theory. Computers & Mathematics with Applications, 143: 23−32. DOI: 10.1016/j.camwa.2023.04.032.
    Celia MA, Bouloutas ET, Zarba RL. 1990. A general mass‐conservative numerical solution for the unsaturated flow equation. Water resources research, 26: 1483−1496. DOI: 10.1029/WR026i007p01483.
    Chen CJ, Chen HC. 1984. Finite analytic numerical method for unsteady two-dimensional Navier-Stokes equations. Journal of Computational Physics, 53: 209−226. DOI: 10.1016/0021-9991(84)90038-X.
    Civan F. 2009. Practical finite-analytic method for solving differential equations by compact numerical schemes. Numerical Methods for Partial Differential Equations, 25: 347−379. DOI: 10.1002/num.20346.
    Gardner W. 1958. Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Science, 85: 228−232. DOI: 10.1097/00010694-195804000-00006.
    Gottardi G, Venutelli M. 1993. Richards: Computer program for the numerical simulation of one-dimensional infiltration into unsaturated soil. Computers & Geosciences, 19: 1239−1266. DOI: 10.1016/0098-3004(93)90028-4.
    Haverkamp R, Debionne S, Angulo-Jaramillo R, et al. 2016. Soil properties and moisture movement in the unsaturated zone. In "The handbook of groundwater engineering", 167-208. CRC Press. DOI: 10.1201/9781420006001.
    Kirkland MR, Hills R, Wierenga P. 1992. Algorithms for solving Richards' equation for variably saturated soils. Water Resources Research, 28: 2049−2058. DOI: 10.1029/92WR00802.
    Kumar R, Tiwari R, Prasad R. 2023. Numerical solution of partial differential equations: Finite difference method. Mathematics and Computer Science, 1: 353−372. DOI:  10.1007/978-1-4899-7278-1.
    Li M, Li J, Singh VP, et al. 2019. Efficient allocation of agricultural land and water resources for soil environment protection using a mixed optimization-simulation approach under uncertainty. Geoderma, 353: 55−69. DOI: 10.1016/j.geoderma.2019.06.023.
    Ren S, ZhangY, Jim Yeh TC, et al. 2021. Multiscale hydraulic conductivity characterization in a fractured granitic aquifer: The evaluation of scale effect. Water Resources Research, 57: e2020WR028482. DOI: 10.1029/2020WR028482.
    Shen C, Phanikumar MS. 2010. A process-based, distributed hydrologic model based on a large-scale method for surface–subsurface coupling. Advances in Water Resources, 33: 1524−1541. DOI: 10.1016/j.advwatres.2010.09.002.
    Srivastava R, Yeh TCJ. 1991. Analytical solutions for one‐dimensional, transient infiltration toward the water table in homogeneous and layered soils. Water Resources Research, 27: 753−762. DOI: 10.1029/90WR02772.
    Suk H, Park E. 2019. Numerical solution of the Kirchhoff-transformed Richards equation for simulating variably saturated flow in heterogeneous layered porous media. Journal of Hydrology, 579: 124213. DOI: 10.1016/j.jhydrol.2019.124213.
    Sun Y, Li D, Jiao L, et al. 2024. Simulation of saturated–unsaturated seepage problems via the virtual element method. Computers and Geotechnics, 171: 106326. DOI: 10.1016/j.compgeo.2024.106326.
    Szymkiewicz A. 2009. Approximation of internodal conductivities in numerical simulation of one‐dimensional infiltration, drainage, and capillary rise in unsaturated soils. Water Resources Research, 45(10): W10403. DOI: 10.1029/2008WR007654.
    Timsina RC. 2024. Infiltration-Induced landslide: An application of richards equation. Journal of Nepal Mathematical Society, 7: 86−99. DOI: 10.3126/jnms.v7i1.67490.
    Tsai WF, Chen CJ, Tien HC. 1993. Finite analytic numerical solutions for unsaturated flow with irregular boundaries. Journal of Hydraulic Engineering, 119: 1274−1298. DOI: 10.1061/(ASCE)0733-9429(1993)119:11(1274).
    Tu MC, Wadzuk B, Traver R. 2020. Methodology to simulate unsaturated zone hydrology in Storm Water Management Model (SWMM) for green infrastructure design and evaluation. PLoS One, 15: e0235528. DOI: 10.1371/journal.pone.0235528.
    Vereecken H, Amelung W, Bauke SL, et al. 2022. Soil hydrology in the Earth system. Nature Reviews Earth & Environment, 3: 573−587. DOI: 10.1038/s43017-022-00324-6.
    Wang YL, Yeh TCJ, Wen JC, et al. 2019. Resolution and ergodicity issues of river stage tomography with different excitations. Water Resources Research, 55: 4974−4993. DOI: 10.1029/2018WR023204.
    Wang YL, Yeh TCJ, Xu D, et al. 2021. Stochastic analysis of oscillatory hydraulic tomography. Journal of Hydrology, 596: 126105. DOI: 10.1016/j.jhydrol.2021.126105.
    Younes A, Koohbor B, Belfort B, et al. 2022. Modeling variable-density flow in saturated-unsaturated porous media: An advanced numerical model. Advances in Water Resources, 159: 104077. DOI: 10.1016/j.advwatres.2021.104077.
    Zeng J, Zha Y, Yang J. 2018. Switching the Richards' equation for modeling soil water movement under unfavorable conditions. Journal of Hydrology, 563: 942−949. DOI: 10.1016/j.jhydrol.2018.06.069.
    Zeng X, Decker M. 2009. Improving the numerical solution of soil moisture–based Richards equation for land models with a deep or shallow water table. Journal of Hydrometeorology, 10: 308−319. DOI: 10.1175/2008JHM1011.1.
    Zha Y, Shi L, Ye M, et al. 2013. A generalized Ross method for two-and three-dimensional variably saturated flow. Advances in water resources, 54: 67−77. DOI: 10.1016/j.advwatres.2013.01.002.
    Zha Y, Yang J, Yin L, et al. 2017. A modified Picard iteration scheme for overcoming numerical difficulties of simulating infiltration into dry soil. Journal of hydrology, 551: 56−69. DOI: 10.1016/j.jhydrol.2017.05.053.
    Zha Y, Yang J, Zeng J, et al. 2019. Review of numerical solution of Richardson–Richards equation for variably saturated flow in soils. Wiley Interdisciplinary Reviews: Water, 6: e1364. DOI: 10.1002/wat2.1364.
    Zhang Z, Wang W, Chen L, et al. 2015. Finite analytic method for solving the unsaturated flow equation. Vadose Zone Journal, 14: 1-10. DOI:  10.2136/vzj2014.06.0073.
    Zhang Z, Wang W, Gong C, et al. 2020. Finite analytic method: Analysis of one-dimensional vertical unsaturated flow in layered soils. Journal of Hydrology, 597: 125716. DOI:  10.1016/j.jhydrol.2020.125716.
    Zhang Z, Wang W, Gong C, et al. 2018. Finite analytic method for modeling variably saturated flows. Science of the Total Environment, 621: 1151−1162. DOI: 10.1016/j.scitotenv.2017.10.112.
    Zhang Z, Wang W, Lu Y. 2021. Improved finite analytic method to simulate soil water movement in vadose zones. Transactions of the Chinese Society of Agricultural Engineering, 37: 55−61. DOI: 10.11975/j.issn.1002-6819.2021.18.007.
    Zhang Z, Wang W, Yeh TCJ, et al. 2016. Finite analytic method based on mixed-form Richards' equation for simulating water flow in vadose zone. Journal of Hydrology, 537: 146−156. DOI: 10.1016/j.jhydrol.2016.03.035.
  • 2305-7068/© Journal of Groundwater Science and Engineering Editorial Office. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)

  • Relative Articles

    [1] Xiang Gao, Tai-lu Li, Yu-wen Qiao, Yao Zhang, Ze-yu Wang, 2024: A combined method using Lattice Boltzmann Method (LBM) and Finite Volume Method (FVM) to simulate geothermal reservoirs in Enhanced Geothermal System (EGS), Journal of Groundwater Science and Engineering, 12, 132-146.  doi: 10.26599/JGSE.2024.9280011
    [2] Zhe Wang, Li-juan Wang, Jian-mei Shen, Zhen-long Nie, Le Cao, Ling-qun Meng, 2024: Groundwater recharge via precipitation in the Badain Jaran Desert, China, Journal of Groundwater Science and Engineering, 12, 109-118.  doi: 10.26599/JGSE.2024.9280009
    [3] Xiu-bo Sun, Chang-lai Guo, Jing Zhang, Jia-quan Sun, Jian Cui, Mao-hua Liu, 2023: Spatial-temporal difference between nitrate in groundwater and nitrogen in soil based on geostatistical analysis, Journal of Groundwater Science and Engineering, 11, 37-46.  doi: 10.26599/JGSE.2023.9280004
    [4] Muhammad Irfan, Sri Safrina, Erry Koriyanti, Netty Kurniawati, Khairul Saleh, Iskhaq Iskandar, 2023: Effects of climate anomaly on rainfall, groundwater depth, and soil moisture on peatlands in South Sumatra, Indonesia, Journal of Groundwater Science and Engineering, 11, 81-88.  doi: 10.26599/JGSE.2023.9280008
    [5] Peng-yu Shi, Jian-jun Liu, Yi-jie Zong, Kai-qing Teng, Yu-ming Huang, Liang Xiao, 2023: Analytical solution for Non-Darcian effect on transient confined-unconfined flow in a confined aquifer, Journal of Groundwater Science and Engineering, 11, 365-378.  doi: 10.26599/JGSE.2023.9280029
    [6] Shima Nasiri, Hossein Ansari, Ali Naghi Ziaei, 2022: Determination of water balance equation components in irrigated agricultural watersheds using SWAT and MODFLOW models : A case study of Samalqan plain in Iran, Journal of Groundwater Science and Engineering, 10, 44-56.  doi: 10.19637/j.cnki.2305-7068.2022.01.005
    [7] Gang Qiao, Feng-dan Yu, Wen-ke Wang, Jun Zhang, Hua-qing Chen, 2022: Thermodynamic transport mechanism of water freezing-thawing in the vadose zone in the alpine meadow of the Tibet Plateau, Journal of Groundwater Science and Engineering, 10, 302-310.  doi: 10.19637/j.cnki.2305-7068.2022.03.008
    [8] Yi-jie Zong, Li-hua Chen, Jian-jun Liu, Yue-hui Liu, Yong-xin Xu, Fu-wan Gan, Liang Xiao, 2022: Analytical solutions for constant-rate test in bounded confined aquifers with non-Darcian effect, Journal of Groundwater Science and Engineering, 10, 311-321.  doi: 10.19637/j.cnki.2305-7068.2022.04.001
    [9] Van Hoang Nguyen, 2021: Determination of groundwater solute transport parameters in finite element modelling using tracer injection and withdrawal testing data, Journal of Groundwater Science and Engineering, 9, 292-303.  doi: 10.19637/j.cnki.2305-7068.2021.04.003
    [10] Jhim Terrazas-Salvatierra, Galo Munoz-Vásquez, Ana Romero-Jaldin, 2020: Migration of total chromium and chloride anion in the Rocha River used for estimating degradation of agricultural soil quality at the Thiu Rancho zone, Journal of Groundwater Science and Engineering, 8, 223-229.  doi: 10.19637/j.cnki.2305-7068.2020.03.003
    [11] ZHAO Yue-wen, WANG Xiu-yan, LIU Chang-li, LI Bing-yan, 2020: Finite-difference model of land subsidence caused by cluster loads in Zhengzhou, China, Journal of Groundwater Science and Engineering, 8, 43-56.  doi: 10.19637/j.cnki.2305-7068.2020.01.005
    [12] SONG Hong-wei, MU Hai-dong, XIA Fan, 2018: Analyzing the differences of brackish-water in the Badain Lake by geophysical exploration method, Journal of Groundwater Science and Engineering, 6, 187-192.  doi: 10.19637/j.cnki.2305-7068.2018.03.004
    [13] LI Guo-ao, YAN Lei, CHEN Zhen-he, LI Ye, 2017: Determination of organic carbon in soils and sediments in an automatic method, Journal of Groundwater Science and Engineering, 5, 124-129.
    [14] LI Man, ZHANG Wei, HE Yu-jiang, WANG Gui-ling, 2017: Research on the effect of straw mulching on the soil moisture by field experiment in the piedmont plain of the Taihang Mountains, Journal of Groundwater Science and Engineering, 5, 286-295.
    [15] MENG Rui-fang, YANG Hui-feng, LIU Chun-lei, 2016: Evaluation of water resources carrying capacity of Gonghe basin based on fuzzy comprehensive evaluation method, Journal of Groundwater Science and Engineering, 4, 213-219.
    [16] ZHANG Wei, SHI Jian-sheng, XU Jian-ming, LIU Ji-chao, DONG Qiu-yao, FAN Shu-xian, 2016: Dynamic influence of Holocene characteristics on vadose water in typical region of central North China Plain, Journal of Groundwater Science and Engineering, 4, 247-258.
    [17] GONG Xiao-ping, JIANG Guang-hui, CHEN Chang-jie, GUO Xiao-jiao, ZHANG Hua-sheng, 2015: Specific yield of phreatic variation zone in karst aquifer with the method of water level analysis, Journal of Groundwater Science and Engineering, 3, 192-201.
    [18] Le SONG, Yan-pei CHENG, 2014: Optimization Research of Water-Soil Resources in Huanghua, Journal of Groundwater Science and Engineering, 2, 86-94.
    [19] GU Ming-xu, LIU Yu, HAN Chong, SHANG Lin-qun, JIANG Xian-qiao, WANG Lin-ying, 2014: Analysis of impact of outfalls on surrounding soil and groundwater environment, Journal of Groundwater Science and Engineering, 2, 54-60.
    [20] Cui-ling Wang, Chang-li Liu, Ya-jie Pang, Li-xin Pei, Yun Zhang, 2013: Adsorption Behavior of Hexavalent Chromium in Vadose Zone, Journal of Groundwater Science and Engineering, 1, 83-88.
  • 加载中

Catalog

    Figures(6)

    Article Metrics

    Article views (52) PDF downloads(5) Cited by()
    Proportional views
    Related

    JGSE-ScholarOne Manuscript Launched on June 1, 2024.

    Online Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return