• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ EBSCO ProQuest Scopus GeoRef AJ CNKI
Advanced Search
Volume 13 Issue 4
Dec.  2025
Turn off MathJax
Article Contents
Li H, Liu L, Li J H, et al. 2025. Removal of 1,2,3-Trichloropropane from groundwater using Graphene Oxide-Modified Nano Zero-Valent Iron Activated Persulfate. Journal of Groundwater Science and Engineering, 13(4): 341-351 doi:  10.26599/JGSE.2025.9280058
Citation: Li H, Liu L, Li J H, et al. 2025. Removal of 1,2,3-Trichloropropane from groundwater using Graphene Oxide-Modified Nano Zero-Valent Iron Activated Persulfate. Journal of Groundwater Science and Engineering, 13(4): 341-351 doi:  10.26599/JGSE.2025.9280058

Removal of 1,2,3-Trichloropropane from groundwater using Graphene Oxide-Modified Nano Zero-Valent Iron Activated Persulfate

doi: 10.26599/JGSE.2025.9280058
More Information
  • Corresponding author: kongxiangke@mail.cgs.gov.cn
  • Received Date: 2025-02-13
  • Accepted Date: 2025-08-21
  • Available Online: 2025-10-10
  • Publish Date: 2025-12-01
  • Graphene Oxide (GO), nanoscale Zero-Valent Iron (nZVI) and GO-modified nZVI (GO-nZVI) composite materials were prepared by the Hummer and polyphenol reduction method, respectively, and Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD) were used to characterize the morphology and phase composition of these materials. A series of batch experiments were then conducted to investigate the performance and influencing factors of GO-nZVI activating peroxydisulfate (SPS) for the degradation of 1,2,3-trichloropropane (TCP). Finally, an in-situ oxidation reaction zone was created by GO-nZVI-activated SPS in a one-dimensional simulated system to study the remediation of TCP contamination under different aquifer conditions. The results showed that the GO-nZVI composite exhibited a porous, fluffy structure, with spherical nZVI particles loaded onto the surface and folds of the GO sheets. Compared with unmodified nZVI particles, the GO-nZVI composite significantly enhanced the removal efficiency of TCP by activated SPS, achieving a removal rate of 67.2% within an hour - 78.2% higher than that of the unmodified system. The SPS dosage and the C/Fe ratio in GO-nZVI were found to significantly affect the degradation efficiency of TCP. The removal rate of TCP increased with higher SPS concentration, and a 10% carbon addition, yielded the best activation effect. The one-dimensional simulation results indicated that the removal rate of TCP ranged from 30.1% to 73.3% under different conditions. A larger medium particle size and higher concentrations of reactants (SPS and GO-nZVI) improved pollutant degradation efficiency, increasing TCP removal by 62.1%, 23.8%, and 3.7%, respectively. In contrast, a higher groundwater flow velocity was not conducive to the removal of pollutants, with the TCP removal rate decreasing by approximately 41.9%.
  • 加载中
  • Arslan-Alaton I, Koba-Ucun O. 2023. Treatment of reactive dye hydrolysates with UV-C- and ozone-activated percarbonate and persulfate. International Journal of Environmental Research, 17(6): 58−73. DOI:  10.1007/s41742-023-00548-4.
    Boyandin AN, Bessonnva VA, Sukhanova AA, et al. 2024. Mechanism of thermochemical degradation of bacterial poly-3-hydroxybutyrate in solutions. Russian Chemical Bulletin, 73(3): 688−694. DOI:  10.1007/s11172-024-4179-9.
    Braki ZA, Sohrabi MR, Motiee F. 2024. Application of central composite design for the simultaneous removal of tetracycline and cefixime using nanoscale zero-valent iron modified by montmorillonite and graphene oxide. Chemical Papers, 78(15): 8181−8193. DOI:  10.1007/s11696-024-03659-0.
    Chen YT, Qie HT, Zhang YJ, et al. 2020. Synthesis of reduced graphene oxide supported zero-valent iron and its treatment of TNT wastewater. Chemical Journal of Chinese University, 41(8): 1836−1842. DOI:  10.7503/cjcu20200198.
    Dai XL, Wang S, Li JB, et al. 2023. Reaearch progress on remediation technology of 1, 2, 3-trichloropropane contaminated groundwater. Applied Chemical Industry, 52(4): 1213−1224. DOI:  10.16581/j.cnki.issn1671-3206.2023.04.026.
    Deng Q, Li H, Han ZT, et al. 2019. Study on the removal efficiency of nano-sized iron particles produced by green tea reduction on Cr(VI) in simulated groundwater. South-North Water Transfers and Water Science & Technology, (1): 130−137. DOI:  10.13476/j.cnki.nsbdqk.2019.0018.
    Dombek T, Davis D, Stine J, et a1. 2004. Degradation of terbutylazine (2-chloro-4-ethylamino-6-terbutylamino-1, 3, 5-triazine) deisopropyl atrazine (2-amino-4-chloro-6-ethylamino-1, 3, 5-triazine) and chlorinated dimethoxy triazine (2-chloro-4, 6-dimethoxy-1, 3, 5-triazine) by zero valent iron and electrochemical reduction. Environmental Pollution, 129(6): 267−275. DOI:  10.1016/j.envpol.2003.10.008.
    Horlu M, Macit CK, Aksakal B, et al. 2024. Investigation of the effect of graphene oxide nanoparticles on the structural and dielectric parameters in zinc oxide semiconductors. Journal of Sol-Gel Science and Technology, 110(1): 169−182. DOI:  10.1007/s10971-024-06350-8.
    Huang XZ, Zhang YX, Zhang DS, et al. 2023. Reduced graphene oxide supported Fe/Ni nanocomposites for 2, 4-dichlorophenol removal. China Environmental Science, 43(12): 6352−6362. DOI:  10.19674/j.cnki.issn1000-6923.2023.0207.
    Jiang Y, Lu R, Chen Y, et al. 2024. Effect of Fe2+-activated persulfate combined with biodegradation in removing gasoline BTX from karst groundwater: A box-column experimental study. Environmental Science and Pollution Research, 31(28): 50733−50745. DOI:  10.1007/s11356-024-34597-9.
    Li H, Han ZT, Deng Q, et al. 2023. Assessing the effectiveness of nanoscale zero-valent iron particles produced by green tea for Cr(VI)-contaminated groundwater remediation. Journal of Groundwater Science and Engineering, 11(1): 55−67. DOI:  10.26599/JGSE.2023.9280006.
    Li H, Han ZT, Ma CX, et al. 2015. Comparison of 1, 2, 3-trichloropropane reduction and oxidation by nanoscale zerovalent iron, zinc and activated persulfate. Journal of Groundwater Science and Engineering, 3(2): 156−163. DOI: 10.26599/ JGSE.2015.9280018.
    Li H, Qian Y, Han ZT, et al. 2023. Natural attenuation monitoring of 1, 2, 3- trichloropropane and benzene in the groundwater of organic pollution sites, Tianjin chemical plant and its environmental restoration suggestions. Geology in China, 50(5): 1446−1459. DOI:  10.12029/gc20220302001.
    Li H, Zhao YS, Han ZT, et al. 2015. Study on influence factors of remediation area of in-situ reaction zone injected with modified nanoiron. China Environmental Science, 35(4): 1135−1141.
    Liu XM. 2018. Enhance degradation of polycyclic aromatic hydrocarbons with persulfate activation by nano zerovalent iron. Dalian: Dalin University of Technology.
    Liu XY, Liu WT, Chi ZF. 2022. Reduced graphene oxide supported nanoscale zero-valent iron (nZVI/rGO) for in-situ remediation of Cr(VI)/nitrate-polluted aquifer. Journal of Water Process Engineering, 49: 103188−103203. DOI:  10.1016/j.jwpe.2022.103188.
    Merrill J P, Suchomel EJ, Varadhan S, et al. 2019. Development and validation of technologies for remediation of 1, 2, 3-trichloropropane in groundwater. Current Pollution Reports, 5(4): 1−10. DOI:  10.1007/s40726-019-00122-7.
    Ning Z, Zhang M, Zhang NN, et al. 2022. Metagenomic characterization of a novel enrichment culture responsible for dehalogenation of 1, 2, 3-trichloropropane to allyl chloride. Journal of Environmental Chemical Engineering, 10(6): 108907−108916. DOI:  10.1016/j.jece.2022.108907.
    Plessl K, Russ A, Vollprecht D. 2023. Application and development of zero-valent iron (ZVI) for groundwater and wastewater treatment. International Journal of Environmental Science and Technology, 20: 6913−6928. DOI:  10.1007/s13762-022-04536-7.
    Ren JG, Gao PC, Xu XJ, et al. 2021. Advances in remediation technology for chlorinated hydrocarbons contamination in groundwater. Research of Environmental Science, 34(7): 1641−1653. DOI:  10.13198/j.issn.1001-6929.2021.01.07.
    Ren LM. 2019. Study on removal of chromium (VI) polluted groundwater using xanthan gum stabilized graphene oxide-supported nanoscale zero-valent iron. Changchun: Jilin University.
    Sarathy V, Salter AJ, Nurmi JT, et al. 2010. Degradation of 1, 2, 3-trichloropropane (TCP): Hydrolysis, elimination, and reduction by iron and znic. Environmental Science and Technology, 44: 787−793. DOI:  10.1021/es902595j.
    Shang WX, Xu HY, Wang JW, et al. 2022. Microbial degradation of organochlorine pesticides. Chemistry and Bioengineering, 39(3): 12−18. DOI:  10.3969/j.issn.1672-5425.2022.03.003.
    Sun F, Zhu Y, Liu X, et al. 2023. Highly efficient removal of Se(IV) using reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO): Selenium removal mechanism. Environmental Science and Pollution Research, 30: 27560−27569. DOI:  10.1007/s11356-022-24226-8.
    Wang J, Liu X, Wang X, et al. 2022. Fe2+ activating persulfate selectively oxidized alcohols by biphasic/homogeneous reaction switch strategy. Chemical Papers, 76(11): 7229−7234. DOI:  10.1007/s11696-022-02366-y.
    Xing R. 2020. Performances and mechamisms of GO/nZVI nanocomposites for organic pollutants removal. Hangzhou: Zhejiang University. DOI:  10.27461/d.cnki.gzjdx.2020.001991.
    Xue W, Chen X, Liu H, et al. 2024. Activation of persulfate by biochar-supported sulfidized nanoscale zero-valent iron for degradation of ciprofloxacin in aqueous solution: Process optimization and degradation pathway. Environmental Science and Pollution Research, 31(7): 10950−10966. DOI:  10.1007/s11356-024-31931-z.
    Xue W, Li J, Chen X. et al. 2023. Recent advances in sulfidized nanoscale zero-valent iron materials for environmental remediation and challenges. Environmental Science and Pollution Research, 30(46): 101933−101962. DOI:  10.1007/s11356-023-29564-9.
    Yan SY, Chen YY, Xu HZ, et al. 2008. A novel advanced oxidation technology based on activated persulfate. Progress in Chemistry, 20(9): 1433−1437.
    Yang XY, Yao C, Liu H, et al. 2018. Study on methylene blue removal by graphene oxide supported magnetic-nano iron. Technology of Water Treatment, 44(10): 53−57. DOI:  10.16796/j.cnki.1000-3770.2018.10.011.
    Yu C, Lu X, Lu J, et al. 2023. Degradation of amaranth by persulfate activated with zero-valent iron: Influencing factors, response surface modeling. SN Applied Sciences, 5(1): 1−14. DOI:  10.1007/s42452-022-05097-7.
    Zhang M. 2019. Degradation of 1, 2, 3-trichloropropane by activated sodium persulfate using nano iron suspension synthesized by green tea. Shijiazhuang: Hebei GEO university. DOI: 10.27752/d.cnki.gsjzj.2019.000010.
    Zhang M, Ning Z, Guo CJ, et al. 2023. Using compound specific isotope analysis to decipher the 1, 2, 3-trichloropropane-to-Allyl chloride transformation by groundwater microbial communities. Environmental Pollution, 316(1): 120577−120583. DOI:  10.1016/j.envpol.2022.120577.
  • 2305-7068/© Journal of Groundwater Science and Engineering Editorial Office. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)

  • Relative Articles

    [1] Li-qiang Ge, Xin Yuan, Liu Yang, 2025: Application of metagenomics in the study of groundwater microorganisms, Journal of Groundwater Science and Engineering, 13, 90-100.  doi: 10.26599/JGSE.2025.9280041
    [2] Ming-nan Yang, Liang Zhu, Jing-tao Liu, Yu-xi Zhang, Bing Zhou, 2023: Influence of water conservancy project on runoff in the source region of the Yellow River and wetland changes in the Lakeside Zone, China, Journal of Groundwater Science and Engineering, 11, 333-346.  doi: 10.26599/JGSE.2023.9280027
    [3] Hui Li, Zhan-tao Han, Qiang Deng, Chun-xiao Ma, Xiang-ke Kong, 2023: Assessing the effectiveness of nanoscale zero-valent iron particles produced by green tea for Cr(VI)-contaminated groundwater remediation, Journal of Groundwater Science and Engineering, 11, 55-67.  doi: 10.26599/JGSE.2023.9280006
    [4] Vinay Kumar Gautam, Mahesh Kothari, P.K. Singh, S.R. Bhakar, K.K. Yadav, 2022: Analysis of groundwater level trend in Jakham River Basin of Southern Rajasthan, Journal of Groundwater Science and Engineering, 10, 1-9.  doi: 10.19637/j.cnki.2305-7068.2022.01.001
    [5] Wen Liang, Nian-qing Zhou, Chao-meng Dai, Yan-ping Duan, Lang Zhou, Yao-jen Tu, 2021: Study of diclofenac removal by the application of combined zero-valent iron and calcium peroxide nanoparticles in groundwater, Journal of Groundwater Science and Engineering, 9, 171-180.  doi: 10.19637/j.cnki.2305-7068.2021.03.001
    [6] KHELFAOUI Hakim, DAJBRI Larbi, LAKHAL Fatima Zohra, CHAFFAI Hicham, HANI Azzedine, SAYAD Lamine, 2020: Determination of the origin of mineralization and groundwater salinity in the Adrar region in the southwest of Algeria, Journal of Groundwater Science and Engineering, 8, 158-171.  doi: 10.19637/j.cnki.2305-7068.2020.02.007
    [7] Muhammad Nauman Malik, Mehdi Murtuza, Iqbal Asif, Bakar Muhammad Saifullah Abu, Brahim Aissa, Dk Nur Afiqah Jalwati Puteri, Amer Farhan Rafique, 2019: Adaptive state estimation of groundwater contaminant boundary input flux in a 2-dimensional aquifer, Journal of Groundwater Science and Engineering, 7, 373-382.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.008
    [8] LI Xiao-hang, WANG Rui, LI Jian-feng, 2018: Study on hydrochemical characteristics and formation mechanism of shallow groundwater in eastern Songnen Plain, Journal of Groundwater Science and Engineering, 6, 161-170.  doi: 10.19637/j.cnki.2305-7068.2018.03.001
    [9] ZHOU Xun, 2017: Arsenic distribution and source in groundwater of Yangtze River Delta economic region, China, Journal of Groundwater Science and Engineering, 5, 343-353.
    [10] Eunhee Lee, Kyoochul Ha, Nguyen Thi Minh Ngoc, Adichat Surinkum, Ramasamy Jayakumar, Yongje Kim, Kamaludin Bin Hassan, 2017: Groundwater status and associated issues in the Mekong-Lancang River Basin: International collaborations to achieve sustainable groundwater resources, Journal of Groundwater Science and Engineering, 5, 1-13.
    [11] Pezhman ROUDGARMI, Ebrahim FARAHANI, 2017: Investigation of groundwater quantitative change, Tehran Province, Iran, Journal of Groundwater Science and Engineering, 5, 278-285.
    [12] Khongsab Somphone, OunakoneKone Xayviliya, 2017: Climate change and groundwater resources in Lao PDR, Journal of Groundwater Science and Engineering, 5, 53-58.
    [13] BAI Bing, CHENG Yan-pei, JIANG Zhong-cheng, ZHANG Cheng, 2017: Climate change and groundwater resources in China, Journal of Groundwater Science and Engineering, 5, 44-52.
    [14] Chamroeun SOK, Sokuntheara CHOUP, 2017: Climate change and groundwater resources in Cambodia, Journal of Groundwater Science and Engineering, 5, 31-43.
    [15] ZHANG Chun-chao, WANG Wen-Ke, SUN Yi-bo, LI Xiang-quan,HOU Xin-wei, 2015: Processes of hydrogeochemical evolution of groundwater in the Guanzhong Basin, China, Journal of Groundwater Science and Engineering, 3, 136-146.
    [16] LI Hui, HAN Zhan-tao, MA Chun-xiao, GUI Jian-ye, 2015: Comparison of 1,2,3-Trichloropropane reduction and oxidation by nanoscale zero-valent iron, zinc and activated persulfate, Journal of Groundwater Science and Engineering, 3, 156-163.
    [17] Liang ZHU, Wei-dong KANG, Ji-chao SUN, Jing-tao LIU, 2014: Quantitative Calculation of Groundwater Vulnerability Assessment Based on Quantification Theory III, Journal of Groundwater Science and Engineering, 2, 78-85.
    [18] MA Shao-bing, ZHOU Jun, LIANG Peng, SU Yao-ming, 2014: Characteristics-based classification research on typical petroleum contaminants of groundwater, Journal of Groundwater Science and Engineering, 2, 41-47.
    [19] Jiansheng Shi, Hongtao Liu, Zhiyuan Liu, Tieliu Chen, 2013: Application of the “Accurate Control Groundwater Resources” Theory in Containment of Groundwater Resource Exhaustion Trend, Journal of Groundwater Science and Engineering, 1, 1-10.
    [20] Jingli Shao, Yali Cui, Yunzhang Zhao, 2013: A Study on Infiltration and Groundwater Development in the Influent Zone of the Perched Lower Yellow River, Journal of Groundwater Science and Engineering, 1, 46-53.
  • 加载中

Catalog

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (38) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return