Citation: | Song HW, Xia F, Wang WQ, et al. 2025. ANN-based prediction model for single-hole water inflow from piedmont to inland plain areas of Hebei Province, North China Plain. Journal of Groundwater Science and Engineering, 13(4): 434-448 doi: 10.26599/JGSE.2025.9280064 |
Almuhaylan MR, Ghumman AR, Al-Salamah IS, et al. 2020. Evaluating the impacts of pumping on aquifer depletion in arid regions using MODFLOW, ANFIS and ANN. Water, 12(8): 2297. DOI: 10.3390/w12082297
|
Batu V. 1998. Aquifer hydraulics: A comprehensive guide to hydrogeologic data analysis. John Wiley & Sons.
|
Bear J. 2012. Hydraulics of groundwater. Courier Corporation.
|
Behzad M, Asghari K, Coppola Jr EA. 2010. Comparative study of SVMs and ANNs in aquifer water level prediction. Journal of Computing in Civil Engineering, 24(5): 408-413. DOI: 10.1061/(ASCE)CP.1943-5487.0000043
|
Cheng W, Dong F, Tang R, et al. 2022. Improved combination weighted prediction model of aquifer water abundance based on a cloud model. ACS Omega, 7(40): 35840−35850. DOI: 10.1021/acsomega.2c04162.
|
Davydycheva S, Rykhlinski N, Legeido P. 2006. Electrical-prospecting method for hydrocarbon search using the induced-polarization effect. Geophysics, 71(4): G179-G189. DOI: 10.1190/1.2217367
|
Devi TG, Rajkumar G, Srinivasan A, et al. 2022. Radial basis function neural network and salp swarm algorithm for paddy leaf diseases classification in Thanjavur, Tamilnadu geographical region. Acta Geophysica, 70(6): 2917–2932. DOI: 10.1007/s11600-022-00865-w.
|
Dong Y, Ma Y. 1996. Pattern recognition of hte characteristics of AE source using neural network proceedings of the 14th word conference on NDT v. 4, New Delhi.
|
Duragasi AR, Sukumaran JV. 2023. Geo-electrical resistivity–based study to estimate the aquifer parameters—a study in parts of Yamuna Nagar District, Haryana State, North India. Arabian Journal of Geosciences, 16(10): 584. DOI: 10.1007/s12517-023-11691-9
|
Ghosh R, Sutradhar S, Das N, et al. 2023, A comparative evaluation of GIS based flood susceptibility models: A case of Kopai river basin, Eastern India. Arabian Journal of Geosciences, 16(11): 591. DOI: 10.1007/s12517-023-11693-7.
|
Goldman M, Neubauer F. 1994, Groundwater exploration using integrated geophysical techniques. Surveys in Geophysics, 15: 331–361. DOI: 10.1007/BF00665814.
|
Gyeltshen S, Kannaujiya S, Chhetri IK, et al. 2023. Delineating groundwater potential zones using an integrated geospatial and geophysical approach in Phuentsholing, Bhutan. Acta Geophysica, 71(1): 341–357. DOI: 10.1007/S11600-022-00856-X.
|
Hálek Václav, Jan Švec. 2011. Groundwater hydraulics. 7. Elsevier.
|
Hansen R. 1997. Feature recognition from potential fields using neural networks. Geophysics, 62(3): 806–817. Available on https://www.pqdtcn.com/thesisDetails/E91274A10FEB4108D4FA530524A984F4
|
Hayashi Y, Buckley JJ, Czogala E. 1993. Fuzzy neural network with fuzzy signals and weights. International Journal of Intelligent Systems, 8(4): 527–537. DOI: 10.1002/int.4550080405.
|
Hiskiawan P, Chen CC, Ye ZK. 2023. Processing of electrical resistivity tomography data using convolutional neural network in ERT-NET architectures. Arabian Journal of Geosciences, 16(10): 581. DOI: 10.1007/s12517-023-11690-w.
|
Janič P, Jadlovská S, Zápach, J, et al. 2019. Modeling of underground mining processes in the environment of MATLAB/Simulink. Acta Montanistica Slovaca, 24(1): 1335−1788.
|
Krenker A, Bešter J, Kos A. 2011. Introduction to the artificial neural networks. Artifiical Neural Networks: Methodological Advances and Biomedical Applications. InTech, 1-18.
|
Li S, Bian H, Zhang D, et al. 2024, Research on pore structure and classification evaluation of tight oil reservoirs based on fractal theory. Acta Geophysica, 1-11. DOI: 10.1007/s11600-024-01299-2
|
Liu GH, Zhang XM, Jia XM. 2007. New technology of groundwater re-sources electrical prospecting. Beijing: Earthquake Press.
|
Liu L, Chen J, Xu L. 2008. Realization and application research of BP neural network based on MATLAB, in Proceedings 2008 International Seminar on Future BioMedical Information Engineering, IEEE, 130–133. DOI: 10.1109/FBIE.2008.92.
|
Liu S, Li X, Wang H. 2011. Hydraulics analysis for groundwater flow through permeable reactive barriers. Environmental Modeling & Assessment, 16: 591–598. DOI: 10.1007/s10666-011-9268-0.
|
Lin HT, Ke KY, Chen CH, et al. 2010. Estimating anisotropic aquifer parameters by artificial neural networks. Hydrological Processes, 24(22): 3237−3250. DOI: 10.1002/hyp.7750.
|
Lin J, Lin T, Ji Y, et al. 2013. Non-invasive characterization of water-bearing strata using a combination of geophysical techniques. Journal of Applied Geophysics, 91: 49−65. DOI: 10.1016/j.jappgeo.2013.02.002.
|
Ling CP, Sun YJ, Yang LH, et al. 2007. Prediction of inrush water of mine with pore water yield based on BP artificial neural network. Hydrogeology & engineering geology, 34(5): 55–58. DOI: 10.16030/j.Cnki.Issn.1000-3665.2007.05.010.
|
Lohani A, Krishan G. 2015. Groundwater level simulation using artificial neural network in southeast Punjab, India. Journal of Geology and Geosciences, 4(3): 206. DOI: 10.4172/2329-6755.1000206.
|
Maiorov K, Vachrusheva N, Lozhkin A. 2021. Solving problems of the oil and gas sector using machine learning algorithms. Acta Montanistica Slovaca, 26(2): 327−337. DOI: 10.46544/AMS.v26i2.11.
|
Maiti S, Erram VC, Gupta G, et al. 2012. ANN based inversion of DC resistivity data for groundwater exploration in hard rock terrain of western Maharashtra (India). Journal of Hydrology, 464: 294−308. DOI: 10.1016/j.jhydrol.2012.07.020.
|
Mnasri M, Amiri A, Nasr IH, et al. 2023. Integrated geophysical approach for ore exploration: Case study of Sidi Bou Aouane–Khadhkhadha Pb–Zn province–Northern Tunisia. Geophysical Prospecting, 71. Advanced Techniques, Methods and Applications for an Integrated Approach to the Geophysical Prospecting, 1772–1791. DOI: 10.1111/1365-2478.13338.
|
Patra H, Adhikari SK, Kunar S. 2016. Groundwater prospecting and management, Springer. DOI: 10.1007/978-981-10-1148-1
|
Persico R. 2023. Introduction to the special issue on 'Advanced techniques, methods and applications for an integrated approach to the geophysical prospecting'. Geophysical Prospecting, 1693–1695. DOI: 10.1111/1365-2478.13423.
|
Sanchez-Vila X, Guadagnini A, Carrera J. 2006. Representative hydraulic conductivities in saturated groundwater flow. Reviews of Geophysics, 44(3): RG3002. DOI: 10.1029/2005RG000169.
|
Saravanan KS, Bhagavathiappan V. 2024. Prediction of crop yield in India using machine learning and hybrid deep learning models. Acta Geophysica, 1-20. DOI: 10.1007/s11600-024-01312-8
|
Scanlon BR. 2000. Uncertainties in estimating water fluxes and residence times using environmental tracers in an arid unsaturated zone. Water Resources Research, 36(2): 395-409. DOI: 10.1029/1999WR900240
|
Sivakrishna K, Ratnam DV, Sivavaraprasad G. 2022. Support vector regression model to predict TEC for GNSS signals. Acta Geophysica, 70(6): 2827–2836. DOI: 10.1007/s11600-022-00954-w.
|
Song H, Mu H, Xia F. 2018. Analyzing the differences of brackish-water in the Badain Lake by geophysical exploration method. Journal of Groundwater Science and Engineering, 6(3): 187−192. DOI: 10.19637/j.cnki.2305-7068.2018.03.004.
|
Song H, Xia F, Mu H, et al. 2020. Study on detecting spatial distribution availability in mine goafs by ultra-high density electrical method. Journal of Groundwater Science and Engineering, 8(3): 281−286. DOI: 10.19637/j.cnki.2305-7068.2020.03.008.
|
Xia F, Song H, Wang M, et al. 2019. Analysis of prospecting polymetallic metallogenic belts by comprehensive geophysical method. Journal of Groundwater Science and Engineering, 3: 237−244. DOI: 10.19637/j.cnki.2305-7068.2019.03.004.
|
Yilmaz OS. 2022. Flood hazard susceptibility areas mapping using Analytical Hierarchical Process (AHP), Frequency Ratio (FR) and AHP-FR ensemble based on Geographic Information Systems (GIS): A case study for Kastamonu, Türkiye. Acta Geophysica, 70(6): 2747−2769. DOI: 10.1007/s11600-022-00882-9.
|
Zhong S, Wang Y, Zheng Y, et al. 2021. Electrical resistivity tomography with smooth sparse regularization. Geophysical Prospecting, 69(8-9): 1773−1789. DOI: 10.1111/1365-2478.13138.
|
2305-7068/© Journal of Groundwater Science and Engineering Editorial Office. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)
[1] | ILUNGA Nyembwe, AMADI Akobundu Nwanosike, Gilbert NDATIMANA, Nelson OKOT, Raphaël TSHIMANGA Muamba, 2024: Evaluation of aquifer hydraulic properties from resistivity and pumping test data in parts of Gwagwalada, Northcentral Nigeria, Journal of Groundwater Science and Engineering, 12, 309-320. doi: 10.26599/JGSE.2024.9280023 |
[2] | Mouna Djellali, Omar Guefaïfia, Chemsedinne Fehdi, Adel Djellali, Amor Hamad, 2023: Assessing the impact of artificial recharge on groundwater in an over-exploited aquifer: A case study in the Cheria Basin, North-East of Algeria, Journal of Groundwater Science and Engineering, 11, 263-277. doi: 10.26599/JGSE.2023.9280022 |
[3] | Jin-xing Guo, Zhi-ping Li, Catalin Stefan, 2022: Managed aquifer recharge (MAR) applications in China–achievements and challenges, Journal of Groundwater Science and Engineering, 10, 57-69. doi: 10.19637/j.cnki.2305-7068.2022.01.006 |
[4] | Chao Song, Man Liu, Qiu-yao Dong, Lin Zhang, Pan Wang, Hong-yun Chen, Rong Ma, 2022: Variation characteristics of CO2 in a newly-excavated soil profile, Chinese Loess Plateau: Excavation-induced ancient soil organic carbon decomposition, Journal of Groundwater Science and Engineering, 10, 19-32. doi: 10.19637/j.cnki.2305-7068.2022.01.003 |
[5] | Chun-lei GUI, Zhen-xing WANG, Rong MA, Xue-feng ZUO, 2021: Aquifer hydraulic conductivity prediction via coupling model of MCMC-ANN, Journal of Groundwater Science and Engineering, 9, 1-11. doi: 10.19637/j.cnki.2305-7068.2021.01.001 |
[6] | M Shahbaz Akhtar, Yoshitaka Nakashima, Makoto Nishigaki, 2021: Clogging mechanisms and preventive measures in artificial recharge systems, Journal of Groundwater Science and Engineering, 9, 181-201. doi: 10.19637/j.cnki.2305-7068.2021.03.002 |
[7] | Qiao-ling YUAN, Zhi-ping LI, Lei-cheng LI, Shu-li WANG, Si-yu YAO, 2020: Pharmaceuticals and personal care products transference-transformation in aquifer system, Journal of Groundwater Science and Engineering, 8, 358-365. doi: 10.19637/j.cnki.2305-7068.2020.04.006 |
[8] | Mehmood Qaisar, Arshad Muhammad, Rizwan Muhammad, Hamid Shanawar, Mehmood Waqas, Ansir Muneer Muhammad, Irfan Muhammad, Anjum Lubna, 2020: Integration of geoelectric and hydrochemical approaches for delineation of groundwater potential zones in alluvial aquifer, Journal of Groundwater Science and Engineering, 8, 366-380. doi: 10.19637/j.cnki.2305-7068.2020.04.007 |
[9] | Yacob T Tesfaldet, Avirut Puttiwongrak, Tanwa Arpornthip, 2020: Spatial and temporal variation of groundwater recharge in shallow aquifer in the Thepkasattri of Phuket, Thailand, Journal of Groundwater Science and Engineering, 8, 10-19. doi: 10.19637/j.cnki.2305-7068.2020.01.002 |
[10] | Abdullah Al Jami, Meher Uddin Himel, Khairul Hasan, Shilpy Rani Basak, Ayesha Ferdous Mita, 2020: NARX neural network approach for the monthly prediction of groundwater levels in Sylhet Sadar, Bangladesh, Journal of Groundwater Science and Engineering, 8, 118-126. doi: 10.19637/j.cnki.2305-7068.2020.02.003 |
[11] | Zhi-yuan LIU, Ding TAN, Zhi-bin CHEN, Yun-fei WEI, Quan CHAI, Xiao-hang CHEN, 2020: Study on multiple induced polarization parameters in groundwater exploration in Bashang poverty alleviation area of Heibei Province, China, Journal of Groundwater Science and Engineering, 8, 274-280. doi: 10.19637/j.cnki.2305-7068.2020.03.007 |
[12] | Abdulrahman Th Mohammad, Qassem H Jalut, Nadia L Abbas, 2020: Predicting groundwater level of wells in the Diyala River Basin in eastern Iraq using artificial neural network, Journal of Groundwater Science and Engineering, 8, 87-96. doi: 10.19637/j.cnki.2305-7068.2020.01.009 |
[13] | A Muthamilselvan, N Rajasekaran, R Suresh, 2019: Mapping of hard rock aquifer system and artificial recharge zonation through remote sensing and GIS approach in parts of Perambalur District of Tamil Nadu, India, Journal of Groundwater Science and Engineering, 7, 264-281. doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.007 |
[14] | SADIKI Moulay Lhassan, EL MANSOURI Bouabid, BENSEDDIK Badr, CHAO Jamal, KILI Malika, EL MEZOUARY Lhoussaine, 2019: Improvement of groundwater resources potential by artificial recharge technique: A case study of Charf El Akab aquifer in the Tangier region, Morocco, Journal of Groundwater Science and Engineering, 7, 224-236. doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.003 |
[15] | YANG Liu, WEN Xue-ru, WU Xiao-li, PEI Li-xin, YUE Chen, LIU Bing, GUO Si-jia, 2019: Height prediction of water flowing fractured zones based on BP artificial neural network, Journal of Groundwater Science and Engineering, 7, 354-359. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.006 |
[16] | ZHAO Fang-hua, 2018: Research on single hole heat transfer power of ground source heat pump system, Journal of Groundwater Science and Engineering, 6, 65-70. doi: 10.19637/j.cnki.2305-7068.2018.01.008 |
[17] | NAN Tian, SHAO Jing-li, CUI Ya-li, 2016: Column test-based features analysis of clogging in artificial recharge of groundwater in Beijing, Journal of Groundwater Science and Engineering, 4, 88-95. |
[18] | ZHANG Xiang-yang, CHEN Zong-yu, YANG Guo-min, TU Le-yi, HU Shui-ming, 2016: Krypton-85 dating of shallow aquifer in Hebei Plain, Journal of Groundwater Science and Engineering, 4, 328-332. |
[19] | Ramasamy Jayakumar, 2015: Groundwater level monitoring-importance global groundwater monitoring network, Journal of Groundwater Science and Engineering, 3, 295-305. |
[20] | Patsakron Assiri, 2013: Artesian Flowing Wells Field of Phu Tok Aquifer, Journal of Groundwater Science and Engineering, 1, 95-98. |