Citation: | WEI Jia-hua, CHU Hai-bo, WANG Rong, et al. 2015: Numerical simulation of karst groundwater system for discharge prediction and protection design of spring in Fangshan District, Beijing. Journal of Groundwater Science and Engineering, 3(4): 316-330. |
Doummar J, Sauter M, Geyer T. 2012. Simulation of flow processes in a large scale karst system with an integrated catchment model (Mike She)-Identification of relevant parameters influencing spring discharge. Journal of Hydrology, 426(12): 112-123.
|
Gurwin J, Lubczynski M. 2005. Modeling of complex multi-aquifer systems for ground-water resources evaluation-Swidnica study case (Poland). Hydrogeology Journal, 13(4): 627-639.
|
Kaufmann G. 2003. Modelling unsaturated flow in an evolving karst aquifer. Journal of Hydro-logy, 276(1): 53-70.
|
Quinn J J, Tomasko D, Kuiper J A. 2006. Modeling complex flow in a karst aquifer. Sedimentary Geology, 184(3-4): 343-351.
|
HU Cai-hong, HAO Yong-hong, et al. 2008. Simulation of spring flows from a karst aquifer with an artificial neural network. Hydrological Processes, 22(5): 596-604.
|
Geyer T, Birk S, et al. 2008. Quantification of temporal distribution of recharge in karst systems from spring hydrographs. Journal of Hydrology, 348(3): 452-463.
|
Chitsazan M, Movahedian A. 2015. Evaluation of artificial recharge on groundwater using MODFLOW model (Case Study: Gotvand Plain-Iran). Journal of Geoscience and Environment Protection, 3(5): 122-132.
|
Hartmann A, Gleeson T, et al. 2015. A large-scale simulation model to assess karstic ground?water recharge over Europe and the Mediterranean. Geoscientific Model Development, 8(6): 1729-1746.
|
Juki? D, Deni?-Juki? V. 2009. Groundwater balance estimation in karst by using a conceptual rainfall-runoff model. Journal of Hydrology, 373(3): 302-315.
|
Jeannin P Y. 2001. Modeling flow in phreatic and epiphreatic karst conduits in the H?lloch cave (Muotatal, Switzerland). Water Resources Research, 37(2): 191-200.
|
Teutsch G. 1990. An extended double-porosity concept as a practical modelling approach for a karstified terranes?. UK: IAHS Publication, 281.
|
Aquilina L, Ladouche B, D?rfliger N. 2006. Water storage and transfer in the epikarst of karstic systems during high flow periods. Journal of Hydrology, 327(3-4): 472-485.
|
Kiraly L. 2003. Karstification and groundwater flow. Speleogenesis & Evolution of Karst Aquifers, 1(3):1-26.
|
Scanlon B R, Mace R E, et al. 2003. Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA. Journal of Hydrology, 276(1-4): 137- 158.
|
HU C, HAO Y, et al. 2008. Simulation of spring flows from a karst aquifer with an artificial neural network. Hydrological Processes, 22(5): 596-604.
|
Barrett M E, Charbeneau R J. 1997. A parsimonious model for simulating flow in a karst aquifer. Journal of Hydrology, 196(1-4): 47-65.
|
LI Ping, LU Wen-xi, et al. 2008. Seepage analysis in a fractured rock mass: the upper reservoir of Pushihe pumped-storage power station in China. Engineering Geology, 97(1-2): 53-62.
|
Fleury P, Plagnes V, Bakalowicz M. 2007. Modelling of the functioning of karst aquifers with a reservoir model: Application to Fontaine de Vaucluse (South of France). Journal of Hydrology, 345(1-2): 38-49.
|
Kaufmann G, Braun J. 2000. Karst aquifer evolution in fractured, porous rocks. Water Resources Research, 36(6): 1381-1391.
|
[1] | Xin Wang, Guo-qiang Zhou, Yan-guang Liu, Ying-nan Zhang, Mei-hua Wei, Kai Bian, 2024: Research progress on temperature field evolution of hot reservoirs under low-temperature tailwater reinjection, Journal of Groundwater Science and Engineering, 12, 205-222. doi: 10.26599/JGSE.2024.9280016 |
[2] | Zhe Wang, Li-juan Wang, Jian-mei Shen, Zhen-long Nie, Le Cao, Ling-qun Meng, 2024: Groundwater recharge via precipitation in the Badain Jaran Desert, China, Journal of Groundwater Science and Engineering, 12, 109-118. doi: 10.26599/JGSE.2024.9280009 |
[3] | Mouna Djellali, Omar Guefaïfia, Chemsedinne Fehdi, Adel Djellali, Amor Hamad, 2023: Assessing the impact of artificial recharge on groundwater in an over-exploited aquifer: A case study in the Cheria Basin, North-East of Algeria, Journal of Groundwater Science and Engineering, 11, 263-277. doi: 10.26599/JGSE.2023.9280022 |
[4] | Yu-kun Sun, Feng Liu, Hua-jun Wang, Xin-zhi Gao, 2022: Numerical simulation of operation performance on production and injection of a double well geothermal system in Kailu Basin, Inner Mongolia, Journal of Groundwater Science and Engineering, 10, 196-208. doi: 10.19637/j.cnki.2305-7068.2022.02.008 |
[5] | Xin Ma, Dong-guang Wen, Guo-dong Yang, Xu-feng Li, Yu-jie Diao, Hai-hai Dong, Wei Cao, Shu-guo Yin, Yan-mei Zhang, 2021: Potential assessment of CO2 geological storage based on injection scenario simulation: A case study in eastern Junggar Basin, Journal of Groundwater Science and Engineering, 9, 279-291. doi: 10.19637/j.cnki.2305-7068.2021.04.002 |
[6] | Feng LIU, Gui-ling WANG, Wei ZHANG, Chen YUE, Li-bo TAO, 2020: Using TOUGH2 numerical simulation to analyse the geothermal formation in Guide basin, China, Journal of Groundwater Science and Engineering, 8, 328-337. doi: 10.19637/j.cnki.2305-7068.2020.04.003 |
[7] | Chun-chao ZHANG, Xin-wei HOU, Xiang-quan LI, Zhen-xing WANG, Chun-lei GUI, Xue-feng ZUO, Jian-fei MA, Ming GAO, 2020: Numerical simulation and environmental impact prediction of karst groundwater in Sangu Spring Basin, China, Journal of Groundwater Science and Engineering, 8, 210-222. doi: 10.19637/j.cnki.2305-7068.2020.03.002 |
[8] | LI Wen-yon, FU Li, ZHU Zheng-feng, 2019: Numerical simulation and land subsidence control for deep foundation pit dewatering of Longyang Road Station on Shanghai Metro Line 18, Journal of Groundwater Science and Engineering, 7, 133-144. doi: 10.19637/j.cnki.2305-7068.2019.02.004 |
[9] | LI Lu-lu, SU Chen, HAO Qi-chen, SHAO Jing-li, 2018: Numerical simulation of response of groundwater flow system in inland basin to density changes, Journal of Groundwater Science and Engineering, 6, 7-17. doi: 10.19637/j.cnki.2305-7068.2018.01.002 |
[10] | WANG Shu-fang, LIU Jiu-rong, SUN Ying, LIU Shi-liang, GAO Xiao-rong, SUN Cai-xia, LI Hai-kui, 2018: Study on the geothermal production and reinjection mode in Xiong County, Journal of Groundwater Science and Engineering, 6, 178-186. doi: 10.19637/j.cnki.2305-7068.2018.03.003 |
[11] | LI Bo, LI Xue-mei, 2018: Characteristics of karst groundwater system in the northern basin of Laiyuan Spring area, Journal of Groundwater Science and Engineering, 6, 261-269. doi: 10.19637/j.cnki.2305-7068.2018.04.002 |
[12] | ZHAN Jiang, LI Wu-jin, LI Zhi-ping, ZHAO Gui-zhang, 2018: Indoor experiment and numerical simulation study of ammonia-nitrogen migration rules in soil column, Journal of Groundwater Science and Engineering, 6, 205-219. doi: 10.19637/j.cnki.2305-7068.2018.03.006 |
[13] | ZHANG Chun-chao, LI Xiang-quan, GAO Ming, HOU Xin-wei, LIU Ling-xia, WANG Zhen-xing, MA Jian-fei, 2017: Exploitation of groundwater resources and protection of wetland in the Yuqia Basin, Journal of Groundwater Science and Engineering, 5, 222-234. |
[14] | YUE Gao-fan, LV Wen-bin, ZHANG Wei, SU Ran, LIN Wen-jing, 2016: Optimization of geothermal water exploitation in Xinji, Hebei Province, P. R. China, Journal of Groundwater Science and Engineering, 4, 197-203. |
[15] | QI Jian-feng, TIAN Meng-ke, CHI Xiu-cheng, WANG Cheng-zhen, 2016: Research on ground fissure origins and mechanisms in Hebei Plain, P. R. China, Journal of Groundwater Science and Engineering, 4, 188-196. |
[16] | ZHOU Xun, WANG Xiao-cui, CAO Qin, LONG Mi, ZHENG Yu-hui, GUO Juan, SHEN Xiao-wei, ZHANG Yu-qi, TA Ming-ming, CUI Xiang-fei, 2016: A discussion of up-flow springs, Journal of Groundwater Science and Engineering, 4, 279-283. |
[17] | WANG Ji-ning, MENG Yong-hui, 2016: Characteristics analysis and model prediction of sea-salt water intrusion in lower reaches of the Weihe River, Shandong Province, China, Journal of Groundwater Science and Engineering, 4, 149-156. |
[18] | WANG Ye, ZHANG Qiu-lan, WANG Shi-chang, SHAO Jing-li, 2015: Forecasting of water yield of deep-buried iron mine in Yanzhou, Shandong, Journal of Groundwater Science and Engineering, 3, 342-350. |
[19] | LIU Yan-guang, ZHU Xi, YUE Gao-fan, LIN Wen-jing, HE Yu-jiang, WANG Gui-ling, 2015: A review of fluid flow and heat transfer in the CO2-EGS, Journal of Groundwater Science and Engineering, 3, 170-175. |
[20] | YANG Yun, WU Jian-feng, LIU De-peng, 2015: Numerical modeling of water yield of mine in Yangzhuang Iron Mine, Anhui Province of China, Journal of Groundwater Science and Engineering, 3, 352-362. |
JGSE-ScholarOne Manuscript Launched on June 1, 2024.