• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ EBSCO Scopus GeoRef AJ CNKI
Advanced Search
Volume 5 Issue 3
Sep.  2017
Turn off MathJax
Article Contents
JIANG Ti-sheng, QU Ci-xiao, WANG Ming-yu, et al. 2017: Analysis on temporal and spatial variations of groundwater hydrochemical characteristics in the past decade in southern plain of Beijing, China. Journal of Groundwater Science and Engineering, 5(3): 235-248.
Citation: JIANG Ti-sheng, QU Ci-xiao, WANG Ming-yu, et al. 2017: Analysis on temporal and spatial variations of groundwater hydrochemical characteristics in the past decade in southern plain of Beijing, China. Journal of Groundwater Science and Engineering, 5(3): 235-248.

Analysis on temporal and spatial variations of groundwater hydrochemical characteristics in the past decade in southern plain of Beijing, China

  • Publish Date: 2017-09-28
  • Groundwater utilization and protection are crucial for sustainable urban development. This is especially true for Beijing, where groundwater is an important source for urban water supply. In this study, statistical methods, including descriptive statistics, correlation analysis, principal component analysis, and Piper-Tri-linear diagram, were used in analyzing the temporal and spatial variations of the hydrochemical characteristics of groundwater based on monitored data from the southern plain of Beijing, China. Results indicated consistent changes of groundwater’s hydrochemical characteristics in different aquifers in the study area. The percentage of HCO3- in total anion increased significantly in the groundwater, and hydrochemical water type evolved gradually from Ca-Mg-Cl-SO4 based to Ca-Mg-HCO3 based from period 2005-2007 to period 2013-2015. In shallow groundwater, the concentration of Na+, Ca2+, SO42-, HCO3-, and total dissolved solids (TDS) increased from period 2005-2007 to period 2013-2015, and the greatest change came from HCO3-, rising from 428.93 to 528.96 mgL-1. The changes of main ionic concentrations in the deep groundwater were consistent with those in the shallow groundwater for both periods. However, the variations in deep groundwater were less than those in shallow groundwater. The temporal and spatial variations of hydrochemical characteristics reflect the groundwater quality in the study area. This study could facilitate decision-making process on the protection of groundwater resources to ensure its sustainable utilization
  • 加载中
  • LV Xiao-jian, LI Yu, LI Zhi-ping. 2015. Thoughts on the coordinated development between groundwater resources and urbanization in Beijing. Urban Geology, (S1): 8-12.
    Gosselin D C, Harvey F E, Frost C D. 2001. Geochemical evolution of ground water in the Great Plains (Dakota) aquifer of Nebraska: Implications for the management of a regional aquifer system. Ground Water, 39(1): 98-108.
    Richter B C, Kreitler C W, Bledose B E. 1993. Geochemical techniques for identifying sources of groundwater slinization. NEW York: CRC Press.
    SHI J S, WANG Z, et al. 2011. Assessment of deep groundwater over-exploitation in the North China Plain. Geoscience Frontiers, 2(4): 593-598.
    Mapoma H W T, Xie X, et al. 2016. Hydrochemical characteristics of rural community ground-water supply in Blantyre, southern Malawi. Journal of African Earth Sciences, 114: 192-202.
    Martos F S, Bosch A P, Calaforra J M. 1999. Hydrogeochemical processes in an arid region of Europe (Almeria, SE Spain). Applied Geochemistry, 14(6): 753-745.
    Green T R, Taniguchi M, et al. 2011. Beneath the surface of global change: Impacts of climate change on groundwater. Journal of Hydrology, 405(3): 532-560.
    Arumugam K, Elangovan K. 2009. Hydrochemical characteristics and groundwater quality assessment in Tirupur Region, Coimbatore District, Tamil Nadu, India. Environmental Geology, 58(7): 1509-1520.
    Rajendra P, Sandashivaiah C, Rangnna G. 2009. Hydrochemical characteristics and evaluation of groundwater quality of Tumkur Amanikere Lake Watershed, Karnataka, India. E-Journal of Chemistry, 6(S1): 211-218.
    Hajalilou B, Khaleghi F. 2009. Investigation of hydrogeochemical factors and groundwater quality assessment in Marand Municipality, northwest of Iran: A multivariate statistical approach. Journal of Food, Agriculture & Environment, 7(3&4): 930-937.
    Voutsis N, Kelepertzis E, et al. 2015. Assessing the hydrogeochemistry of groundwaters in ophiolite areas of Euboea Island, Greece, using multivariate statistical methods. Journal of Geochemical Exploration, 159: 79-92.
    Tizro A T, Voudouris K S. 2008. Groundwater quality in the semi-arid region of the Chahardouly basin, West Iran. Hydrological Processes, 22(16): 3066-3078.
    Seth R, Mohan M, et al. 2016. Water quality evaluation of Himalayan Rivers of Kumaun region, Uttarakhand, India. Applied Water Science, 6(2): 137-147.
    Dixon W, Chiswell B. 1992. The use of hydrochemical sections to identify recharge areas and saline intrusions in alluvial aquifers, southeast Queensland, Australia. Journal of Hydrology, 130(1-4): 299-338.
    Bor?vka L, Vacek O, Jehli?ka J. 2005. Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils. Geoderma, 128(3): 289-300.
    Qusai Y Al-Kubaisi, Sarkawt G S. 2009. Hydrochemical evaluation of the groundwater in Fatah Umar-Hazar Kani area, northeast Iraq. Iraqi Bulletin of Geology and Mining, 5(1): 87-99.
    Panno S V, Hackley K C, et al. 1994. Hydrochemistry of the mahomet bedrock valley aquifer, East-Central IIIinois: Indicators of recharge and groundwater flow. Ground Water, 32(4): 591- 604.
    Gibbs R J. 1970. Mechanisms controlling world water chemistry. Science, 170(3962): 1088- 1090.
    Moya C E, Raiber M, et al. 2015. Hydrochemical evolution and groundwater flow processes in the Galilee and Eromanga basins, Great Artesian Basin, Australia: A multivariate statistical approach. Science of the Total Environment, 508: 411-426.
    Anwar A E. 2010. Hydrogeochemical charac-teristics and evolution of groundwater at the Ras Sudr-Abu Zenima Area, Southwest Sinai, Egypt. Journal of King Abdulaziz University: Earth Science, 21(1): 79-109 .
    Mahlknecht J, Schneider J F, et al. 2004. Groundwater recharge in a sedimentary basin in semi-arid Mexico. Hydrogeology Journal, 12(5): 511-530.
    Matiatos I, Alexopoulos A, Godelitsas A. 2014. Multivariate statistical analysis of the hydro-geochemical and isotopic composition of the groundwater resources in northeastern Peloponnesus (Greece). Science of the Total Environment, 476-477: 577-590.
    WANG Xin-juan, LI Peng, et al. 2016. Effect of over exploitation on underground water quality in the upper part of Chaobai River alluvial fan in Beijing. Geoscience, 30(2): 470-477.
    SHI J S, LI G M, et al. 2014. Evolution mechanism and control of groundwater in the North China Plain. Acta Geoscientica Sinica, 35(5): 527- 534.
  • Relative Articles

    [1] Mi Tang, Jun Lv, Shi Yu, Yan Liu, Shao-hong You, Ping-ping Jiang, 2024: Application of hydrochemistry and strontium isotope for understanding the hydrochemical characteristics and genesis of strontium-rich groundwater in karst area, Gongcheng County, Southwest China, Journal of Groundwater Science and Engineering, 12, 264-280.  doi: 10.26599/JGSE.2024.9280020
    [2] Xiu-bo Sun, Chang-lai Guo, Jing Zhang, Jia-quan Sun, Jian Cui, Mao-hua Liu, 2023: Spatial-temporal difference between nitrate in groundwater and nitrogen in soil based on geostatistical analysis, Journal of Groundwater Science and Engineering, 11, 37-46.  doi: 10.26599/JGSE.2023.9280004
    [3] Abdelhakim LAHJOUJ, Abdellah EL HMAIDI, Karima BOUHAFA, 2020: Spatial and statistical assessment of nitrate contamination in groundwater: Case of Sais Basin, Morocco, Journal of Groundwater Science and Engineering, 8, 143-157.  doi: 10.19637/j.cnki.2305-7068.2020.02.006
    [4] Mohammad Tofayal Ahmed, Minhaj Uddin Monir, Md Yeasir Hasan, Md Mominur Rahman, Md Shamiul Islam Rifat, Md Naim Islam, Abu Shamim Khan, Md Mizanur Rahman, Md Shajidul Islam, 2020: Hydro-geochemical evaluation of groundwater with studies on water quality index and suitability for drinking in Sagardari, Jashore, Journal of Groundwater Science and Engineering, 8, 259-273.  doi: 10.19637/j.cnki.2305-7068.2020.03.006
    [5] Prusty Rabiranjan, Biswal Trinath, 2020: Physico-chemical, bacteriological and health hazard effect analysis of the water in Taladanda Canal, Paradip area, Odisha, India, Journal of Groundwater Science and Engineering, 8, 338-348.  doi: 10.19637/j.cnki.2305-7068.2020.04.004
    [6] Mehdi Bahrami, Elmira Khaksar, Elahe Khaksar, 2020: Spatial variation assessment of groundwater quality using multivariate statistical analysis(Case Study: Fasa Plain, Iran), Journal of Groundwater Science and Engineering, 8, 230-243.  doi: 10.19637/j.cnki.2305-7068.2020.03.004
    [7] Negar Fathi, Mohammad Bagher Rahnama, Mohammad Zounemat Kermani, 2020: Spatial analysis of groundwater quality for drinking purpose in Sirjan Plain, Iran by fuzzy logic in GIS, Journal of Groundwater Science and Engineering, 8, 67-78.  doi: 10.19637/j.cnki.2305-7068.2020.01.007
    [8] ZHOU Nian-qing, LI Tian-shui, ZHAO Shan, ZHAO Shan, XIA Xue-min, 2019: Characteristics of the main inorganic nitrogen accumulation in surface water and groundwater of wetland succession zones, Journal of Groundwater Science and Engineering, 7, 173-181.  doi: 10.19637/j.cnki.2305-7068.2019.02.008
    [9] HU Zun-fang, KANG Feng-xin, ZOU An-de, YU Lin-song, LI Yang, TIAN Tong-liang, KANG Gui-ling, 2019: Evolution trend of the water quality in Dongping Lake after South-North Water Transfer Project in China, Journal of Groundwater Science and Engineering, 7, 333-339.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.004
    [10] T K G P Ranasinghe, R U K Piyadasa, 2019: Visualizing the spatial water quality of Bentota, Sri Lanka in the presence of seawater intrusion, Journal of Groundwater Science and Engineering, 7, 340-353.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.005
    [11] LI Bo, LI Xue-mei, 2018: Characteristics of karst groundwater system in the northern basin of Laiyuan Spring area, Journal of Groundwater Science and Engineering, 6, 261-269.  doi: 10.19637/j.cnki.2305-7068.2018.04.002
    [12] Alhassan H Ismai, Muntasir A Shareef, Wesam Mahmood, 2018: Hydrochemical characterization of groundwater in Balad district, Salah Al-Din Governorate, Iraq, Journal of Groundwater Science and Engineering, 6, 306-322.  doi: 10.19637/j.cnki.2305-7068.2018.04.006
    [13] ZHANG Yu-qin, WANG Guang-wei, WANG Shi-qin, YUAN Rui-qiang, TANG Chang-yuan, SONG Xian-fang, 2018: Hydrochemical characteristics and geochemistry evolution of groundwater in the plain area of the Lake Baiyangdian watershed, North China Plain, Journal of Groundwater Science and Engineering, 6, 220-233.  doi: 10.19637/j.cnki.2305-7068.2018.03.007
    [14] LI Xiao-hang, WANG Rui, LI Jian-feng, 2018: Study on hydrochemical characteristics and formation mechanism of shallow groundwater in eastern Songnen Plain, Journal of Groundwater Science and Engineering, 6, 161-170.  doi: 10.19637/j.cnki.2305-7068.2018.03.001
    [15] TIAN Xia, FEI Yu-hong, ZHANG Zhao-ji, LI Ya-song, DUN Yu, GUO Chun-yan, 2017: Analysis on hydrochemical characteristics of groundwater in strongly exploited area in Hutuo River Plain, Journal of Groundwater Science and Engineering, 5, 130-139.
    [16] YU Kai-ning, LI Jian, LI Hui, CHEN Kang, LV Bing-xu, ZHAO Long-hui, 2016: Statistical characteristics of heavy metals content in groundwater and their interrelationships in a certain antimony mine area, Journal of Groundwater Science and Engineering, 4, 284-292.
    [17] SHANG Xiao-gang, YU Xiang-hui, LI Cheng-ying, CHAI Hui-peng, JIANG Nan-jie, 2015: Geochemical characteristics of geothermal water in Weiyuan geothermal field, Huzhu County, Qinghai Province, Journal of Groundwater Science and Engineering, 3, 59-69.
    [18] MA Shao-bing, ZHOU Jun, LIANG Peng, SU Yao-ming, 2014: Characteristics-based classification research on typical petroleum contaminants of groundwater, Journal of Groundwater Science and Engineering, 2, 41-47.
    [19] LI Yu, CUI Yu, SUN Ying, LI Zhi-ping, WANG Xin-juan, WANG Li-ya, YANG Qing, WANG Rong, 2014: Sustainable utilization measures of groundwater resources in Beijing, Journal of Groundwater Science and Engineering, 2, 60-66.
    [20] B.T. Hiller, N. Jadamba, 2013: Groundwater Use in the Selenge River Basin, Mongolia, Journal of Groundwater Science and Engineering, 1, 11-32.
  • 加载中

Catalog

    Article Metrics

    Article views (710) PDF downloads(696) Cited by()
    Proportional views
    Related

    JGSE-ScholarOne Manuscript Launched on June 1, 2024.

    Online Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return