• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ EBSCO Scopus GeoRef AJ CNKI
Advanced Search
Volume 1 Issue 2
Sep.  2013
Turn off MathJax
Article Contents
Peter MALIK, Dagmar HAVIAROVA, Anton AUXT, et al. 2013: Isotopic Composition of Waters in the Dem?novská dolina Valley and Its Underground Hydrologic System During Winter and Spring of 2010/2011. Journal of Groundwater Science and Engineering, 1(2): 14-23.
Citation: Peter MALIK, Dagmar HAVIAROVA, Anton AUXT, et al. 2013: Isotopic Composition of Waters in the Dem?novská dolina Valley and Its Underground Hydrologic System During Winter and Spring of 2010/2011. Journal of Groundwater Science and Engineering, 1(2): 14-23.

Isotopic Composition of Waters in the Dem?novská dolina Valley and Its Underground Hydrologic System During Winter and Spring of 2010/2011

  • Publish Date: 2013-09-28
  • In the Dem?novská dolina Cave system (Slovakia) and its vicinity, 32 sampling places for regular observation (in 2-months interval) of δ18O and δ2H in water were established. This monitoring included precipitation waters, waters in the surface streams, waters of the underground hydrological system as well as the dripping seepage waters of the cave system. Altitudinal extent of the area was from 800 m a.s.l. (lowermost cave entrance) to 2024 m a.s.l. (Chopok Mt. on the top of the crystalline range). Initial results show some similarities but also differences within the analyzed water types. For precipitation, a high variability of isotopic composition was confirmed, from quite depleted up to more enriched waters (δ18O from -16.8‰ up to -5.7‰; δ2H from -121.6‰ to -32.7‰). During the recharge process and groundwater/surface water formation, precipitation water is homogenized, what is reflected in much more stable isotope content. The most depleted (δ18O ≈ -11.7‰ to -10.8‰; δ2H ≈ -78.9‰ to -73.4‰) were the waters of surface streams, running from the northern slopes of the Nízke Tatry Mts., formed by crystalline rocks, alochtonous to the under?ground hydrological system. Smaller autochtonous surface water streams (formed in the side valleys of the main karstic canyon) are slightly enriched (heavier, as δ18O ≈ -11.4‰ to -10.6‰; δ2H ≈ -78.3‰ to -71.5‰), what reflects lower altitudes of their watersheds. Interesting is the distribution of the isotope content of the underground streams in the cave system. The most depleted are the underground streams directly (visibly) communicating with surface waters (δ18O≈-11.33±0.13‰; δ2H≈-76.88±1.68‰). Extent of the relationship of underground streams to the autochtonous seepage waters (slow circulation through the fissures) is manifested by respective portion of iso?topically enriched waters–as the underground streams show different isotope composition. The combination of the alochtonous water components (from surface streams reaching the karstic area from the adjacent crystalline via swallow holes) and autochtonous water components (recharged directly in karstified limestones) is visible especially on the subsurface stream of Dem?novka. The most isotopically enriched (heaviest) of all water types are dripping seepage waters (δ18O ≈ -10.4‰ to -9.4‰; δ2H ≈ -71.6‰ to -65.0‰).
  • 加载中
  • Biely, A. & Bezák, V. (eds.), Bujnovsky, A., Vozárová, A., Klinec, A., Miko, O., Halouzka, R., Vozár, J., Beňu?ka, P., Hanzel, V., Kube?, P., Li??ák, P., Luká?ik, E., Maglay, J., Molák, B., Pulec, M., Puti?, M. & Slavkay, M., 1997: Vysvetlivky ku geologickej mape Nízkych Tatier 1: 50 000. GúD?, Bratislava, pp. 232
    Malík, P. & Michalko, J. 2010: Oxygen Isotopes in Different Recession Subregimes of Karst Springs in the Brezovské Karpaty Mts. (Slovakia). Acta Carsologica 39/2, Postojna 2010, 271–287
    Malík, P., Michalko, J. & Rapant, S. 1993: ?truktúrnohydrogeologická analyza karbonátov triasu krí?ňanského príkrovu vo Ve?kej Fatre. Manuscript-Archive of the Geofond Branch, State Geological Institute of Dionyz ?túr, Bratislava, Arch. No. 79413, pp. 277
    Haviarová, D., Malík, P., Grolmusová, Z., Veis, P., Michalko, J. 2011: Predbe?né vysledky monitorovania izotopového zlo?enia v?d v Dem?novskej doline a jej podzemnom hydrologickom systéme. Aragonit 16/1-2 2011, p. 69-70
    IAEA 2002: Water and Environment Newsletter of the Isotope Hydrology Section, International Atomic Energy Agency. Issue No.16, November 2002, p. 5
    Biely, A. (ed.), Beňu?ka, P., Bezák, V., Bujnovsky, A., Halouzka, R., Ivani?ka, J., Kohút, M., Klinec, A., Luká?ik, E., Maglay, J., Miko, O., Pulec, M., Puti?, M. & Vozár, J., 1992: Geologická mapa Nízkych Tatier 1:50 000, GúD?, Bratislava, map sheet
  • Relative Articles

    [1] Ghulam Zakir-Hassan, Jehangir F Punthakey, Ghulam Shabir, Faiz Raza Hassan, 2024: Assessing the potential of underground storage of flood water: A case study from Southern Punjab Region in Pakistan, Journal of Groundwater Science and Engineering, 12, 387-396.  doi: 10.26599/JGSE.2024.9280029
    [2] Ying-nan Zhang, Yan-guang Liu, Kai Bian, Guo-qiang Zhou, Xin Wang, Mei-hua Wei, 2024: Development status and prospect of underground thermal energy storage technology, Journal of Groundwater Science and Engineering, 12, 92-108.  doi: 10.26599/JGSE.2024.9280008
    [3] Yi-hang Gao, Jun-hui Shen, Lin Chen, Xiao Li, Shuang Jin, Zhen Ma, Qing-hua Meng, 2023: Influence of underground space development mode on the groundwater flow field in Xiong’an new area, Journal of Groundwater Science and Engineering, 11, 68-80.  doi: 10.26599/JGSE.2023.9280007
    [4] Xiao-xia Tong, Rong Gan, Shu-qian Gu, Xing-le Sun, Kai-tuo Huang, Xiao-feng Yan, 2022: Stable chlorine isotopic signatures and fractionation mechanism of groundwater in Anyang, China, Journal of Groundwater Science and Engineering, 10, 393-404.  doi: 10.19637/j.cnki.2305-7068.2022.04.007
    [5] ZHONG Hua-ping, WU Yong-xiang, 2020: State of seawater intrusion and its adaptive management countermeasures in Longkou City of China, Journal of Groundwater Science and Engineering, 8, 30-42.  doi: 10.19637/j.cnki.2305-7068.2020.01.004
    [6] Chun-chao ZHANG, Xin-wei HOU, Xiang-quan LI, Zhen-xing WANG, Chun-lei GUI, Xue-feng ZUO, Jian-fei MA, Ming GAO, 2020: Numerical simulation and environmental impact prediction of karst groundwater in Sangu Spring Basin, China, Journal of Groundwater Science and Engineering, 8, 210-222.  doi: 10.19637/j.cnki.2305-7068.2020.03.002
    [7] ZHOU Chang-song, ZOU Sheng-zhang, ZHU Dan-ni, XIE Hao, CHEN Hong-feng, WANG Jia, 2018: Pollution pattern of underground river in karst area of the Southwest China, Journal of Groundwater Science and Engineering, 6, 71-83.  doi: 10.19637/j.cnki.2305-7068.2018.02.001
    [8] SONG Ang, LIANG Yue-ming, LI Qiang, 2018: Influence of precipitation on bacterial structure in a typical karst spring, SW China, Journal of Groundwater Science and Engineering, 6, 193-204.  doi: 10.19637/j.cnki.2305-7068.2018.03.005
    [9] LI Bo, LI Xue-mei, 2018: Characteristics of karst groundwater system in the northern basin of Laiyuan Spring area, Journal of Groundwater Science and Engineering, 6, 261-269.  doi: 10.19637/j.cnki.2305-7068.2018.04.002
    [10] SONG Chao, HAN Gui-lin, WANG Pan, SHI Ying-chun, HE Ze, 2017: Hydrochemical and isotope characteristics of spring water discharging from Qiushe Loess Section in Lingtai, northwestern China and their implication to groundwater recharge, Journal of Groundwater Science and Engineering, 5, 364-373.
    [11] WANG Ying, CHEN Zong-yu, 2016: Responses of groundwater system to water development in northern China, Journal of Groundwater Science and Engineering, 4, 69-80.
    [12] DAI Wen-Bin, ZHANG Wei-Jun, COWEN Taha, 2015: An analysis of River Derwent pollution and its impacts, Journal of Groundwater Science and Engineering, 3, 39-44.
    [13] GUO Qing-hai, ZHANG Xiao-bo, LIU Ming-liang, LI Jie-xiang, ZHOU Chao, ZHANG Can-hai, ZHU Ming-cheng, ZHANG Xiao-bo, GUO Wei, WANG Yan-xin, 2015: Geochemical genesis of geothermal waters from the Longling hydrothermal area, Yunnan, Southwestern China, Journal of Groundwater Science and Engineering, 3, 213-221.
    [14] WEI Jia-hua, CHU Hai-bo, WANG Rong, JIANG Yuan, 2015: Numerical simulation of karst groundwater system for discharge prediction and protection design of spring in Fangshan District, Beijing, Journal of Groundwater Science and Engineering, 3, 316-330.
    [15] HAN Kang-qin, LIU Jian, HAN Lei-lei, HAN Wen-ling, ZHANG Yun-xiao, 2014: Prediction of Impacts Caused by South-to-North Water Diversion on Underground Water Level in Shijiazhuang, Journal of Groundwater Science and Engineering, 2, 27-33.
    [16] BAI Xi-qing, LIU Yan, 2014: Feasibility Analysis on Resuming Flow of Large Karst Spring in Heilongdong, Journal of Groundwater Science and Engineering, 2, 80-87.
    [17] Kang-qin HAN, Ri-sheng DUAN, Liang-liang JIA, Yuan-yuan DUAN, Min-ying FENG, 2014: Analysis on Present Status of Underground Water Pollution in Shijiazhuang and Its Prevention Measures, Journal of Groundwater Science and Engineering, 2, 44-48.
    [18] Song Bo, Liu Changli, Zhang Yun, Hou Hongbing, Pei Lixin, Yang Liu, 2013: Urban Waste Disposal and Its Impact on Groundwater Pollution in China, Journal of Groundwater Science and Engineering, 1, 88-95.
    [19] Wang Qian, Zhang Lizhong, Cai Zizhao, Huo Zhibin, Zhang Huaidong, 2013: Evaluation Index System of Hydrogeological Investigation Software, Journal of Groundwater Science and Engineering, 1, 96-103.
    [20] Yan Zhang, Shuai Song, Jing Li, Fadong Li, Guangshuai Zhao, Qiang Liu, 2013: Stable Isotope Composition of Rainfall, Surface Water and Groundwater along the Yellow River, Journal of Groundwater Science and Engineering, 1, 82-88.
  • 加载中

Catalog

    Article Metrics

    Article views (1100) PDF downloads(957) Cited by()
    Proportional views
    Related

    JGSE-ScholarOne Manuscript Launched on June 1, 2024.

    Online Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return