• ISSN 2305-7068
  • ESCI CABI CSA Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Comparison on the phytoextraction efficiency of Bidens pilosa at heavy metal contaminated site in natural and electrokinetic conditions

Li Yue-nan Gu Yan-sheng Li Man-zhou Huo Guang-jie Wang Xi-ping Xu Zhi-jie Yue Jie Du Dan Geng Man-ge

Li Yue-nan, Gu Yan-sheng, Li Man-zhou, et al. 2021: Comparison on the phytoextraction efficiency of Bidens pilosa at heavy metal contaminated site in natural and electrokinetic conditions. Journal of Groundwater Science and Engineering, 9(2): 121-128. doi: 10.19637/j.cnki.2305-7068.2021.02.004
Citation: Li Yue-nan, Gu Yan-sheng, Li Man-zhou, et al. 2021: Comparison on the phytoextraction efficiency of Bidens pilosa at heavy metal contaminated site in natural and electrokinetic conditions. Journal of Groundwater Science and Engineering, 9(2): 121-128. doi: 10.19637/j.cnki.2305-7068.2021.02.004

doi: 10.19637/j.cnki.2305-7068.2021.02.004

Comparison on the phytoextraction efficiency of Bidens pilosa at heavy metal contaminated site in natural and electrokinetic conditions

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Map showing the research site

    Figure  2.  In-situ EK assisted phytoremediation system setup

    Figure  3.  Heavy metal concentrations in the AG (blue bars) and root (red bars) of the Bidens pilosa in the control group

    Figure  4.  Heavy metal concentrations in the AG (blue bars) and root (red bars) of Bidens pilosa under EK condition

    Table  1.   Detailed sampling scheme for EK and control groups

    Sample typeSoil:Before remediationSoil:After remediationPlant:AGPlant:Root
    Subsample locations Anode×3 Anode×3 Anode×3 Anode×3
    Central×3 Central×3 Central×3 Central×3
    Cathode×3 Cathode×3 Cathode×3 Cathode×3
    9 subsamples 9 subsamples 9 subsamples 9 subsamples
    in total in total in total in total
    下载: 导出CSV

    Table  2.   Comparison of the HM concentrations in Bidens pilosa under natural and EK conditions

    CdPbCuCrZn
    AGConcentration: Natural condition (mg/kg)0.100.233.019.1538.15
    Concentration: EK condition (mg/kg)0.404.327.275.31830.24
    Increase rate (%)292.161 731.78141.69−42.022 076.26
    RootConcentration: Natural condition (mg/kg)0.0461.8158.3915.8834.90
    Concentration: EK condition (mg/kg)0.524.3610.8713.7398.12
    Increase rate (%)1 034.78140.6629.58−13.49181.16
    下载: 导出CSV

    Table  3.   Comparison of the BCF in Bidens pilosa under natural and EK conditions.

    CdPbCuCrZn
    AGBCF: Natural condition0.160.0050.100.130.40
    BCF: EK condition0.810.130.270.931.02
    Increase rate (%)407.202 506.00172.65−32.092 411.27
    RootBCF: Natural condition0.070.030.270.2337
    BCF: EK condition1.060.130.400.23120
    Increase rate (%)1 361.64245.6746.21−1.25224.42
    下载: 导出CSV

    Table  4.   Comparison of TF in Bidens pilosa under natural and EK conditions.

    CdPbCuCrZn
    TF: Natural condition2.210.130.350.571.09
    TF: Power-on condition0.760.990.660.388.46
    Increase rate (%)−6566186−32674
    下载: 导出CSV

    Table  5.   Comparison of the soil HM removal efficiency by Bidens pilosa under natural and EK conditions

    CdPbCuZnCr
    Removal rate: natural condition (%)559161219
    Removal rate: EK condition (%)2672277913
    Increase rate (%)420.0022.0468.75558.33−31.58
    下载: 导出CSV
  • Aboughalma H, Bi R, Schlaak M. 2008. Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants. Journal of Environmental Science and Health, Part A, 43(8): 926-933. doi:  10.1080/10934520801974459
    Agwu KK, Okoye C, Okeji MC, et al. 2018. Potential health impacts of heavy metal concentrations in fresh and marine water fishes consumed in southeast, Nigeria. Pakistan Journal of Nutrition, 17(12): 647-653. doi:  10.3923/pjn.2018.647.653
    Ahemad. 2019. Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: Paradigms and prospects. Arabian Journal of Chemistry, 12(7): 1365-1377. doi:  10.1016/j.arabjc.2014.11.020
    Badr N, Fawzy M, Al-Qahtani KM. 2012. Phytoremediation: An ecological solution to heavy-metal-polluted soil and evaluation of plant removal ability. World Applied Sciences Journal, 16(9): 1292-1301.
    Bi R, Schlaak M, Siefert E, et al. 2011. Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum). Chemosphere, 83(3): 318-326. doi:  10.1016/j.chemosphere.2010.12.052
    Bian F, Zhong Z, Zhang X, et al. 2019. Bamboo-an untapped plant resource for the phytoremediation of heavy metal contaminated soils. Chemosphere, 246: 125750. doi:  10.1016/j.chemosphere.2019.125750
    Cameselle C, Chirakkara RA, Reddy KR. 2013. Electrokinetic-enhanced phytoremediation of soils: Status and opportunities. Chemosphere, 93(4): 626-636. doi:  10.1016/j.chemosphere.2013.06.029
    Cang L, Wang Q, Zhou D, et al. 2011. Effects of electrokinetic-assisted phytoremediation of a multiple-metal contaminated soil on soil metal bioavailability and uptake by Indian mustard. Separation & Purification Technology, 79(2): 246-253. doi:  10.1016/j.seppur.2011.02.016
    Chen HF, Zhou DM, Cang L, et al. 2007. Effects of vertical electric field and EDTA application on ryegrass copper and zinc uptake and their leaching risks. Acta Pedologica Sinica, 44(1): 174-178. (in Chinese)
    Couto N, Guedes P, Ribeiro AB, et al. 2015. Phytoremediation and the electrokinetic process: Potential use for the phytoremediation of Antimony and Arsenic. In: Phytoremediation. Springer, pp. 199-209. DOI: 10.1007/978-3-319-10969-5_17.
    Hassan I, Mohamedelhassan E, Yanful EK, et al. 2018. Enhancement of bioremediation and phytoremediation using electrokinetics. In: Naofumi Shiomi (ed), Advances in Bioremediation and Phytoremediation, IntechOpen. DOI: 10.5772/intechopen.73202.
    Hodko D, Hyfte JV, Denvir A, et al. 2000. Methods for enhancing phytoextraction of contaminants from porous media using electrokinetic phenomena. US Patent 6145244.
    Jacob JM, Karthik C, Saratale RG, et al. 2018. Biological approaches to tackle heavy metal pollution: A survey of literature. Journal of Environmental Management, 217: 56-70. doi:  10.1016/j.jenvman.2018.03.077
    Jin ZM, Deng SQ, Wen YC, et al. 2019. Application of Simplicillium chinense for Cd and Pb biosorption and enhancing heavy metal phytoremediation of soils. Science of the Total Environment, 697(20): 1-9. doi:  10.1016/j.scitotenv.2019.134148
    Kalčíková G, Zupančič M, Jemec A, et al. 2016. The impact of humic acid on chromium phytoextraction by aquatic macrophyte Lemna minor. Chemosphere, 147: 311-317. doi:  10.1016/j.chemosphere.2015.12.090
    Li KJ, Lun ZJ, Zhao L, et al. 2017. Screening for autochthonous phytoextractors in a heavy metal contaminated coal mining area. International Journal of Environmental Researchandd Public Health, 14(9): 1068. doi:  10.3390/ijerph14091068
    Li KJ, Gu YS, Li MZ, et al. 2018. Spatial analysis, source identification and risk assessment of heavy metals in a coal mining area in Henan, Central China. International Biodeterioration & Biodegradation, 128: 148-154. doi:  10.1016/j.ibiod.2017.03.026
    Liu WQ, Zhu F, Ma SY, et al. 2015. Research progress on the electro-kinetic remediation of soil polluted by heavy metal. Safety Environmental Engineering, 22(2): 55-60. (in Chinese)
    Lu P, Feng QY, Li XD, et al. 2009. Improvement in electrokinetic remediation of chromium contaminated soil with polarity exchange technique. Chinese Journal of Environmental Engineering, 3(2): 354-358. (in Chinese)
    Ma SC, Zhang HB, Ma ST, et al. 2015. Effects of mine wastewater irrigation on activities of soil enzymes and physiological properties, heavy metal uptake and grain yield in winter wheat. Ecotoxicology and Environmental Safety, 113: 483-490. doi:  10.1016/j.ecoenv.2014.12.031
    Manoj SR, Karthik C, Kadirvelu K, et al. 2020. Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review. Journal of environmental management, 254: 109779. doi:  10.1016/j.jenvman.2019.109779
    Paulo JC, Pratas J, Varun M, et al. 2014. Phytoremediation of soils contaminated with metals and metalloids at mining areas: Potential of native flora. Environmental Risk Assessment of Soil Contamination, 17: 485-517. doi:  10.5772/57469
    Pazos M, Sanroman MA, Cameselle C. 2006. Improvement in electrokinetic remediation of heavy metal spiked kaolin with the polarity exchange technique. Chemosphere, 62(5): 817-822. doi:  10.1016/j.chemosphere.2005.04.071
    Pratas J, Paulo JC, D'Souza R, et al. 2013. Phytoremedial assessment of flora tolerant to heavy metals in the contaminated soils of an abandoned Pb mine in Central Portugal. Chemosphere, 90(8): 2216-2225. doi:  10.1016/j.chemosphere.2012.09.079
    Reddy KR, Cameselle C. 2009. Electrochemical remediation Technologies for Polluted Soils, Sediments and Groundwater. John Wiley & Sons, Hoboken, New Jersey, USA. DOI: 10.1002/9780470523650.
    Reddy KR, Chandhuri KS. 2009. Fenton-like oxidation of polycyclic aromatic hydrocarbons in soils using electrokinetics. Journal of Geotechnical and Geo-environmental Engineering, 135(10): 1429-1439. doi:  10.1061/(ASCE)GT.1943-5606.0000109
    Siyar R, Ardejani FD, Farahbakhsh M, et al. 2020. Potential of Vetiver grass for the phytoremediation of a real multi-contaminated soil, assisted by electrokinetic. Chemosphere, 246: 1-10. doi:  10.1016/j.chemosphere.2019.125802
    Sun YB, Zhou QX, Lin W, et al. 2009. Characteristics of cadmium tolerance and bioaccumulation of Bidens pilosa L seedlings. Environmental Science, 30(10): 3028-3035. (in Chinese)
    Tangahu BV, Abdullah SS, Basri H, et al. 2011. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, 2011: 1-31. doi:  10.1155/2011/939161
    Van der Ent A, Baker AJM, Reeves RD, et al. 2013. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil, 362: 319-334. doi:  10.1007/s11104-012-1287-3
    Xi YH, Yang Y, Zhou GH. 2009. Experimental research of electrokinetic remediation of undisturbed soil polluted by Pb2+. Guizhou Agricultural Sciences, 37(4): 101-104. (in Chinese)
    Xu HZ. 2015. Efficiency of direct current (DC) field and Sedum alfredii Hance on remediation to cadmium contaminated soil. M.S. thesis. Hangzhou: Zhejiang A & F University.
    Yao GH. 2015. Effects of alternating current (AC) field and organic materials on improving the efficiency of Sedum alfredii Hance to remediate heavy metal contaminated soil. M.S. thesis. Hangzhou: Zhejiang A & F University.
    Zeng P, Guo ZH, Xiao XY, et al. 2019. Phytoextraction potential of Pteris vittata L. co-planted with woody species for As, Cd, Pb and Zn in contaminated soil. Science of the Total Environment, 650: 594-603. doi:  10.1016/j.scitotenv.2018.09.055
    Zhang CL, Zhang ZZ, Chen J, et al. 2016. Biliometric analysis of soil heavy metal pollution restoration in China. World Agriculture, 01: 136-140. (in Chinese)
    Zhao PL, Bi R. 2012. Electrokinetic combined phytoremediation technology for soil heavy metal pollution. Heilongjiang Science and Technology Information, 10: 43-44. (in Chinese)
    Zheng SS, Shen ZM, Chen XJ, et al. 2007. Electrokinetic remediation of heavy contamination soils using enhanced with approaching anodes technique. Journal of Agro-Environment Science, 26(1): 240-245. (in Chinese)
    Zhou BZ, Lyu X, Zhao XH. 2011. Research on electrokinetic remediation of heavy metals in surplus sludge. Chinese Journal of Environmental Engineering, 5(6): 1401-1404. (in Chinese)
    Zhou DM, Cang L, Deng CF, et al. 2005. Influence of complexes and acidity control on electrokinetic processes of soil chromium. China Environmental Science, 25(1): 10-14. (in Chinese)
    Zhu X, Qian F, Zhou C, et al. 2019. Inherent metals of a phytoremediation plant influence its recyclability by hydrothermal liquefaction. Environmental Science & Technology, 53(11): 6580-6586. doi:  10.1021/acs.est.9b00262
  • [1] ZHOU Hao, WU Yong, HUANG Feng, TANG Xue-fang2021:  Experimental simulation and dynamic model analysis of Cadmium (Cd) release in soil affected by rainfall leaching in a coal-mining area, Journal of Groundwater Science and Engineering, 9, 65-72. doi: 10.19637/j.cnki.2305-7068.2021.01.006
    [2] Rabiranjan Prusty, Trinath Biswal2020:  Physico-chemical, bacteriological and health hazard effect analysis of the water in Taladanda Canal, Paradip area, Odisha, India, Journal of Groundwater Science and Engineering, 8, 338-348. doi: 10.19637/j.cnki.2305-7068.2020.04.004
    [3] CAO Yan-ling, SONG Liang, LIU Lian, ZHU Wen-feng, CUI Su, WANG Yan-ting, GUO Peng2020:  Preliminary study on strontium-rich characteristics of shallow groundwater in Dingtao Area, China, Journal of Groundwater Science and Engineering, 8, 244-258. doi: 10.19637/j.cnki.2305-7068.2020.03.005
    [4] LIU Zhi-yuan, TAN Ding, CHEN Zhi-bin, WEI Yun-fei, CHAI Quan, CHEN Xiao-hang2020:  Study on multiple induced polarization parameters in groundwater exploration in Bashang poverty alleviation area of Heibei Province, China, Journal of Groundwater Science and Engineering, 8, 274-280. doi: 10.19637/j.cnki.2305-7068.2020.03.007
    [5] SAMI Guellouh, ABDELWAHHAB Filali, Med ISSAM Kalla2020:  Estimation of the peak flows in the catchment area of Batna (Algeria), Journal of Groundwater Science and Engineering, 8, 79-86. doi: 10.19637/j.cnki.2305-7068.2020.01.008
    [6] LI Bo, LI Xue-mei2018:  Characteristics of karst groundwater system in the northern basin of Laiyuan Spring area, Journal of Groundwater Science and Engineering, 6, 261-269. doi: 10.19637/j.cnki.2305-7068.2018.04.002
    [7] ZHOU Chang-song, ZOU Sheng-zhang, ZHU Dan-ni, XIE Hao, CHEN Hong-feng, WANG Jia2018:  Pollution pattern of underground river in karst area of the Southwest China, Journal of Groundwater Science and Engineering, 6, 71-83.
    [8] ZHANG Han-xiong, HU Xiao-nong2018:  Simulation and analysis of Chloride concentration in Zhoushan reclamation area, Journal of Groundwater Science and Engineering, 6, 150-160.
    [9] TIAN Xia, FEI Yu-hong, ZHANG Zhao-ji, LI Ya-song, DUN Yu, GUO Chun-yan2017:  Analysis on hydrochemical characteristics of groundwater in strongly exploited area in Hutuo River Plain, Journal of Groundwater Science and Engineering, 5, 130-139.
    [10] LIN Dan, JIN Meng-gui, LI Xiu-juan2017:  Risk assessment of heavy metals in topsoil along the banks of theYangtze River in Huangshi, China, Journal of Groundwater Science and Engineering, 5, 162-172.
    [11] LIU Shu-yuan, WANG Hong-qi2016:  Dynamic assessment of pollution risk of groundwater source area in Northern China, Journal of Groundwater Science and Engineering, 4, 333-343.
    [12] XIA Ri-yuan2016:  Groundwater resources in karst area in Southern China and sustainable utilization pattern, Journal of Groundwater Science and Engineering, 4, 301-309.
    [13] LI Jie-biao, SU Rui, YANG Jing-zhi, ZHOU Zhi-chao, JI Rui-li, ZHANG Ming, GAO Yu-feng2016:  Distribution characteristics of tritium in the soil in Beishan area of Gansu Province, Journal of Groundwater Science and Engineering, 4, 131-140.
    [14] CUI Zhen, YANG Po, ZHANG Zheng2016:  Comprehensive suitability evaluation of urban geological environment in Zhengzhou-Kaifeng area, Journal of Groundwater Science and Engineering, 4, 204-212.
    [15] YU Kai-ning, LI Jian, LI Hui, CHEN Kang, LV Bing-xu, ZHAO Long-hui2016:  Statistical characteristics of heavy metals content in groundwater and their interrelationships in a certain antimony mine area, Journal of Groundwater Science and Engineering, 4, 284-292.
    [16] WANG Hong-ke, GUO Jiao, SHI Ying-chun2015:  Type of major water hazards and study of countermeasures in Shennan Mining Area, Journal of Groundwater Science and Engineering, 3, 70-76.
    [17] Duo LI, Kang CHEN2014:  Research on Migration Features of Ammonia-Nitrogen in Shallow Groundwater of Coastal Area of Tangshan Fengnan, Journal of Groundwater Science and Engineering, 2, 39-43.
    [18] ZHANG Shao-cai, LIU Li-jun, LIU Zhi-gang, WANG Jun-jie, CUI Qiu-ping, WANG Juan2014:  Method for groundwater research in bedrock of mountainous area of Hebei, Journal of Groundwater Science and Engineering, 2, 97-104.
    [19] CHEN Feng, LI Lian-juan, ZHANG Hao, LI Yan2014:  Evaluation on Water Burst (inrush) Risks on 15# Coal Seam Roof of Shigejie Coal Mine of Shaanxi Lu’an Group, Journal of Groundwater Science and Engineering, 2, 40-46.
    [20] Wang Ping, Han Zhantao, Li Yasong, Chen Kang, Lv Xiaoli, Jian Ming2013:  The Role of Groundwater Leakage through Deep Wells for the Deformation of Groundwater Flow: a Case Study in Cangzhou Area, Journal of Groundwater Science and Engineering, 1, 80-87.
  • 加载中
图(4) / 表ll (5)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  51
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-30
  • 录用日期:  2020-12-10
  • 网络出版日期:  2021-08-04
  • 刊出日期:  2021-06-15

目录

    /

    返回文章
    返回

    Submission system is out of service now, please submit to our email: gwse-iheg@188.com, hope your understanding!

    投审稿系统正在维护中,请您提交到期刊邮箱gwse-iheg@188.com,给您带来的不便敬请谅解。