• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Geochemical records of the sediments and their significance in Dongping Lake Area, the lower reach of Yellow River , North China

Yu Lin-song Liu Hong-bo Wan Fang Hu Zun-fang Luo Huai-dong Zhang Xiu-wen

Lin-song Yu, Hong-bo Liu, Fang Wan, et al. 2021: Geochemical records of the sediments and their significance in Dongping Lake Area, the lower reach of Yellow River , North China. Journal of Groundwater Science and Engineering, 9(2): 140-151. doi: 10.19637/j.cnki.2305-7068.2021.02.006
Citation: Lin-song Yu, Hong-bo Liu, Fang Wan, et al. 2021: Geochemical records of the sediments and their significance in Dongping Lake Area, the lower reach of Yellow River , North China. Journal of Groundwater Science and Engineering, 9(2): 140-151. doi: 10.19637/j.cnki.2305-7068.2021.02.006

doi: 10.19637/j.cnki.2305-7068.2021.02.006

Geochemical records of the sediments and their significance in Dongping Lake Area, the lower reach of Yellow River , North China

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Schematic representation of Dongping Lake with location of sampling sites

    Note: S1 is the sample of the Dawen River flooding alluvial deposits; S6 and S9 are samples of surface sediments in Dongping Lake; S11, S12, and S13 are samples of the Yellow River flooding alluvial deposits.

    Figure  2.  Sampling of Dongping Lake surface sediments (A) and sediment sampling of the Yellow River floodplain (B)

    Note: The red circle in Figure B (e) represents the sampling position.

    Figure  3.  Diagram of major elements in surface sediments

    Figure  4.  R-type cluster analysis of major elements

    Figure  5.  Bivariate plot of Organic matter vs. TiO2

    Figure  6.  Bivariate plot of TiO2 vs. Al2O3 (a) and TiO2 vs. Zr (b)(Hayashi et al. 1997)

    Note: S1: Sample of Dawen River; S6 and S9: Samples of Dongping Lake; S11, S12, and S13: Samples of the Yellow River.

    Figure  7.  Comparisons of UCC-normalized REE patterns

    Figure  8.  Bivariate plot of (La/Lu)N vs. (La/Sm)N (a) and ∑HREE vs. ∑LREE (b)

    Note: S1: Sample of Dawen River; S6 and S9: Samples of Dongping Lake; S11, S12, and S13: Samples of the Yellow River.

    Figure  9.  Bivariate plot of Rb vs. Sr in Dongping Lake (a) and the Yellow River (b)

    Note: S1: Sample of Dawen River; S6 and S9: Samples of Dongping Lake; S11, S12, and S13: Samples of the Yellow River.

    Figure  10.  Bivariate plot of SiO2 vs. Rb/Sr (a), Sr vs. Rb/Sr (b) for the investigated sediments

    Note: S1: Sample of Dawen River; S6 and S9: samples of Dongping Lake; S11, S12, and S13: Samples of the Yellow River.

    Table  1.   Contents of metal oxides, organic matter and pH distribution in the study area / wt%

    pHaOrganic mattersbSiO2Al2O3Fe2O3MgOCaONa2OK2OMnOTiO2P2O5
    S17.777.4068.17613.1154.3881.4102.3552.8402.6090.0660.5410.139
    S67.9519.8040.56813.1335.5832.57313.8940.8532.4650.1180.5480.137
    S97.9980.9028.5359.4934.2591.87421.5590.6371.6750.0770.3760.165
    S118.025.5067.22210.5333.9081.8255.3112.1582.2050.0580.5430.125
    S128.005.6063.77211.0754.2632.0745.9642.0212.2560.0660.5780.138
    S138.0110.1048.74513.8545.6972.9329.2941.2052.7180.1030.6190.165
    Loess in China8.463.9054.6611.544.453.447.871.701.960.200.30
    CJav///11.6405.4602.9103.0601.4702.200///
    HHav///9.8603.3501.8403.8802.2501.950///
    UCC//66.0015.204.502.204.203.903.40/0.500.17
    Note: pHa : Organic mattersb : ‰; Loess in China, from Wen QZ, 1989; CJav: Average sediment of the Yangtze River, HHav: Average sediment of the Yellow River, from Yang SY et al. 2003; UCC: The upper continental crust, from Taylor et al. 1985.
    下载: 导出CSV

    Table  2.   Contents of REE and trace elements in the study area / ppm

    LaCePrNdSmEuGdTbDyHoErTmYbLuRbSrZrRb/Sr(La/Lu)N (La/Yb)N (La/Sm)N (Gd/Yb)N δEu δCe ∑LREE ∑HREE ∑L/∑H ∑REE
    S1 29.51 54.87 7.64 28.45 5.19 1.09 4.55 0.70 3.97 0.74 2.16 0.35 2.05 0.32 111.2 246.7 281.8 0.45 1.38 1.40 1.01 1.32 0.98 0.80 126.74 14.84 8.54 141.58
    S6 38.14 90.10 9.20 34.39 6.35 1.28 5.91 0.92 5.15 0.96 2.74 0.43 2.46 0.38 106.2 303.1 135.1 0.35 1.50 1.50 1.07 1.43 0.92 1.05 179.45 18.95 9.47 198.41
    S9 31.71 70.45 7.28 26.88 4.82 0.98 4.38 0.67 3.68 0.68 1.95 0.31 1.74 0.26 70.4 447.4 93.0 0.16 1.82 1.76 1.17 1.50 0.94 1.01 142.13 13.67 10.40 155.80
    S11 25.72 56.42 6.50 24.59 4.75 0.98 4.30 0.70 4.06 0.78 2.26 0.37 2.09 0.32 82.2 201.3 200.6 0.41 1.20 1.19 0.96 1.23 0.95 0.95 118.95 14.89 7.99 133.85
    S12 36.34 80.78 8.70 32.34 6.06 1.22 5.51 0.90 5.00 0.96 2.83 0.46 2.63 0.41 90.5 214.2 220.8 0.42 1.33 1.34 1.07 1.25 0.93 0.99 165.45 18.68 8.86 184.13
    S13 40.09 94.00 9.88 37.23 6.94 1.42 6.47 1.01 5.76 1.06 3.13 0.51 2.85 0.44 111.4 236.9 151.1 0.47 1.37 1.36 1.03 1.35 0.93 1.03 189.55 21.24 8.92 210.79
    Loess in China 33 66.9 6.74 28.2 5.74 1.14 4.87 0.84 4.62 0.95 2.68 0.43 2.74 0.43 88 209 / 0.42 1.15 1.17 1.02 1.06 0.95 0.98 141.72 17.56 8.07 159.28
    Cj av 36.64 66.13 8.7 33.87 6.18 1.31 5.72 0.87 4.85 1 2.64 0.39 2.3 0.35 / 135.5 258.3 / 1.57 1.54 1.06 1.48 0.97 0.81 152.83 18.12 8.43 170.95
    Hh av 29.23 54.5 7.15 26.93 5.05 1.05 4.69 0.75 3.95 0.84 2.24 0.35 2.06 0.32 / 186.6 262.5 / 1.37 1.37 1.03 1.36 0.95 0.82 123.91 15.20 8.15 139.11
    HHjn 26.2 52 6.18 22.8 4.28 0.89 4.28 0.56 3.51 0.63 2.07 0.27 1.96 0.26 / / / / 1.51 1.29 1.09 1.30 0.91 0.89 112.35 13.54 8.30 125.89
    HHw 31 61.8 7.15 26.9 5.02 0.97 4.92 0.65 3.9 0.72 2.29 0.3 2.16 0.3 / / / / 1.55 1.39 1.10 1.36 0.86 0.90 132.84 15.24 8.72 148.08
    Rav 45 95 8 35 7 1.5 5 1 4.5 1 3 0.4 3.5 0.5 / / / / 1.35 1.25 1.15 0.85 1.11 1.09 191.50 18.90 10.13 210.40
    UCC 32 73 7.9 33 5.7 1.24 5.2 0.85 5.8 1.04 3.4 0.5 3.1 0.48 / / / / 1 1 1 1 1 1 152.84 20.37 7.50 173.21
    Note: Loess in China, from Wen QZ, 1989; CJav: Average sediment of the Yangtze River, HHav: Average sediment of the Yellow River, from Yang SY et al. 2003; UCC: The upper continental crust, from Taylor et al. 1985;
    HHjn: Jinan section of the lower Yellow River, sample collection time: April 1996, HHw: Whole rock sample of the Yellow River, from Yang SY et al., 2003; Rav: World river average, from Chester, 2000; (La/Lu)N, (La/Yb)N, (La/Sm)N, (Gd/Yb)N, δEu(Eu/Eu*) and δCe(Ce/Ce*): Calculated by UCC standardization.
    下载: 导出CSV
  • Andjelkovic A, Ristic R, Janic M, et al. 2017. Genesis of sediments and siltation of the accumulation ‘duboki potok’ of the barajevska river basin, serbia. Journal of Environmental Protection & Ecology, 18(4): 1735-1745.
    Babeesh C, Achyuthan H, Sajeesh TP. 2018. Geochemical signatures of Karlad Lake sediments, North Kerala: Source area weathering and provenance. Journal of the Geological Society of India, 92(2): 177-186. doi:  10.1007/s12594-018-0979-6
    Bekteshi A, Myrtaj E. 2014. Heavy metals in the Shkodra Lake ecosystem. Journal of Environmental Protection & Ecology, 15(3): 834-841.
    Cai XM, Guo GX, Zhang L, et al. 2013. The origin of lakes in Beijing City. Geology in China, 40(4): 1092-1098. (in Chinese)
    Chen J, An CS, Wang YJ. 1999. Distribution of Rb and Sr in the Luochuan loess-paleosol sequence of China during the last 800 ka. Chinese Science (Series D), 42(3): 225-232. (in Chinese) doi:  10.1007/BF02878959
    Chen YY, Li WJ, Zhang R, et al. 2019. Characterizing the mineral composition of sediments of the Yellow River: A riview. Journal of Jiangsu Normal University (Natural Science Edition), 37(1): 1-4. (in Chinese)
    Chester R. 2000. Marine Geochemistry. Oxford: Blackwell Science.
    Dou SZ, Sun ZC, Cao Y, et al. 2000. Hydrobios and control of eutrophication in Dongping Lake, Shandong Province. Acta Geologica Sinica (English Edition), 74(2): 329-333. doi:  10.1111/j.1755-6724.2000.tb00470.x
    Fralick PW, Kronberg BI. 1997. Geochemical discrimination of clastic sedimentary rock sources. Sedimentary Geology, 113(1): 111-124. doi:  10.1016/S0037-0738(97)00049-3
    Gong CD, Dai HM, Yang ZS. 2013. Comparison of REE variations with grain sizes in sediments between the Yangtze River and the Yellow River. Geology and Resources, 22(2): 148-154. (in Chinese)
    Håkanson L, Jansson M. 1983. Principles of lake sedimentology. Berlin: Springer-Verlag.
    Han JW, Micheline K. 2001. Data mining: Concepts and techniques. Morgan Kaufman Publishers.
    Hayashi K, Fujisawa H, Holland HD, et al. 1997. Geochemistry of 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61(19): 4115-4137. doi:  10.1016/S0016-7037(97)00214-7
    He LB, Liu QY. 1997. Chemical characteristics of clay minerals of Yangtze and Yellow Rivers. Chinese Science Bulletin, 42(7): 730-734. (in Chinese) doi:  10.1360/csb1997-42-7-730
    Hu ZF, Kang FX, Zou AD, et al. 2019. Evolution trend of the water quality in Dongping Lake after South-North Water Transfer Project in China. Journal of Groundwater Science and Engineering, 7(4): 333-339.
    Ji HJ, Zhu YZ, Wu XS. 1995. Correspondence cluster analysis and its application in exploration geochemistry. Journal of Geochemical Exploration, 55(1-3): 137-144. doi:  10.1016/0375-6742(95)00025-9
    Jin ZD, Wu JL, Cao JJ, et al. 2004. Holocene chemical weathering and climatic oscillations in north China: Evidence from lacustrine sediments. Boreas, 33(3): 260-266. doi:  10.1080/03009480410001280
    Lan XH, Li RH, Zhang ZX, et al. 2015. Element geochemistry records of surface sediments in the east of the Bohai Sea and the Northern Yellow Sea. Acta Geoscientica Sinica, 36(6): 718-728. (in Chinese) doi:  10.3975/cagsb.2015.06.04
    Li BG, Ma X. 2010. Effects of different pH values on phosphate adsorption by different sediments in the middle and lower reaches of the Yellow River. Proceedings of China Annual Conference of Environmental Science: 2459-2463. (in Chinese)
    Li WJ, Chen YY, Yu SY, et al. 2019. Distribution of organic matter in surface sediment of Dongping Lake and its environmental significance. Environmental Engineering, 37(8): 70-75. (in Chinese)
    Liu YJ, Cao LM, Li ZL. 1984. Element geochemistry. Beijing: Science Press.
    Pang HL, Pan BT, Eduardo G, et al. 2018. Mineralogy and geochemistry of modern Yellow River sediments: Implications for weathering and provenance. Chemical Geology, 488: 76-86. doi:  10.1016/j.chemgeo.2018.04.010
    Rao QH, Sun ZG, Tian LP, et al. 2018. Assessment of arsenic and heavy metal pollution and ecological risk in inshore sediments of the Yellow River estuary, China. Stochastic Environmental Research and Risk Assessment, 32(10): 2889-2902. doi:  10.1007/s00477-018-1588-z
    Sheng M, Wang XS, Chu GQ, et al. 2015. Tracing the provenance of the Huguangyan Maar Lake sediments in coastal regions of South China. Acta Geologica Sinica (English Edition), 89(3): 1053-1054. doi:  10.1111/1755-6724.12504
    Song LM, Li YQ. 2011. Study on physical-chemical properties and distribution characteristics of the surficial sediment of Dongping Lake. Journal of Anhui Agricultural Science, 39(12): 7425-7427.
    Sun WP, Hu CY, Han ZB, et al. 2016. Distribution and sources of trace metals in the surface sediments of Prydz Bay, Antarctica. Acta Sedimentologica Sinica, 34(2): 308-314.
    Taylor SR. 1985. The continental crust: Its composition and evolution. Oxford: Blackwells.
    Wang JZ, Wu JL, Pan BT, et al. 2018. Sediment records of Yellow River channel migration and Holocene environmental evolution of the Hetao Plain, northern China. Journal of Asian Earth Sciences, 156: 180-188. doi:  10.1016/j.jseaes.2018.01.031
    Wang ZB, Yang SY, Li RH, et al. 2010. Detrital mineral composition of the sediments from Huanghe and its hydrodynamic environmental constraints. Marine Geology & Quaternary Geology, 30(4): 73-85. (in Chinese) doi:  10.3724/SP.J.1140.2010.04073
    Wen QZ. 1989. Chinese loess geochemistry. Beijing: Science Press. (in Chinese)
    Wu YH, Li SJ. 2004. Significance of lake sediment color for short time scale climate variation. Advances in Earth Science, 19(5): 789-792. (in Chinese) doi:  10.1007/BF02873097
    Yan LJ, Zheng MP. 2014. Dynamic changes of lakes in Inner Mongolia–Xinjiang region and the climate interaction in the past forty years. Acta Geoscientica Sinica, 35(4): 463-472. doi:  10.3975/cagsb.2014.04.08
    Yang JQ, Cui ZJ, Yi CL, et al. 2004. Glacial lacustrine sediment’s response to climate change since holocene in Diancang Mountain. Acta Geographica Sinica, 59(4): 525-533. doi:  10.3321/j.issn:0375-5444.2004.04.005
    Yang SY, Jung HS, Choi MS, et al. 2002. The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) River sediments. Earth and Planetary Science Letters, 201(2): 407-419. doi:  10.1016/S0012-821X(02)00715-X
    Yang SY, Li CX. 1999. REE geochemistry and tracing application in the Yangtze River and the Yellow River sediments. Geochimica, 28(4): 374-380. (in Chinese) doi:  CNKI:SUN:DQHX.0.1999-04-008
    Yang SY, Li CX, Jung HS, et al. 2003. Re-recognition of REEs restriction and tracing significance in the sediments of the Yellow River. Progress in Natural Science, 13(4): 365-371.
    Yue BJ, Liao J. 2016. Provenance study of Yellow River sediments by U-Pb dating of the detrital zircons. Marine Geology & Quaternary Geology, 36(5): 109-119. (in Chinese)
    Zeng Y, Chen JA, Zhang W, et al. 2011. The non-residual Rb/Sr ratio of the Huguangyan Maar Lake and its implications for paleoclimate change. Geochimica, 40(3): 249-257. doi:  10.1007/s11589-011-0776-4
    Zhang H. 2017. The Factors for Transformation between the fractions of speciation of trace metals in lake sediments. Acta Geologica Sinica (English Edition), 91(2): 753-754. doi:  10.1111/1755-6724.13141
    Zhang Y, Song S, Li J, et al. 2013. Stable isotope composition of rainfall, surface water and groundwater along the Yellow River. Journal of Groundwater Science and Engineering, 1(1): 82-88.
  • [1] Yong-jun Su, Hui Tang, Ai-min Wu, Xue-ping Dai, Shuang Liu, Hong-wei Liu, Heng Kuang2023:  Geological suitability of natural sponge body for the construction of sponge city—a case study of Shuanghe Lake district in Zhengzhou airport zone, Journal of Groundwater Science and Engineering, 11, 146-157. doi: 10.26599/JGSE.2023.9280013
    [2] Ming-nan Yang, Liang Zhu, Jing-tao Liu, Yu-xi Zhang, Bing Zhou2023:  Influence of water conservancy project on runoff in the source region of the Yellow River and wetland changes in the Lakeside Zone, China, Journal of Groundwater Science and Engineering, 11, 333-346. doi: 10.26599/JGSE.2023.9280027
    [3] Song Chao, Liu Man, Dong Qiu-yao, Zhang Lin, Wang Pan, Chen Hong-yun, Ma Rong2022:  Variation characteristics of CO2 in a newly-excavated soil profile, Chinese Loess Plateau: Excavation-induced ancient soil organic carbon decomposition, Journal of Groundwater Science and Engineering, 10, 19-32. doi: 10.19637/j.cnki.2305-7068.2022.01.003
    [4] Wu Yan-hao, Zhou Nian-qing, Wu Zi-jun, Lu Shuai-shuai, Cai Yi2022:  Carbon, nitrogen and phosphorus coupling relationships and their influencing factors in the critical zone of Dongting Lake wetlands, China, Journal of Groundwater Science and Engineering, 10, 250-266. doi: 10.19637/j.cnki.2305-7068.2022.03.004
    [5] Liang Zhu, Ming-nan Yang, Jing-tao Liu, Yu-xi Zhang, Xi Chen, Bing Zhou2022:  Evolution of the freeze-thaw cycles in the source region of the Yellow River under the influence of climate change and its hydrological effects, Journal of Groundwater Science and Engineering, 10, 322-334. doi: 10.19637/j.cnki.2305-7068.2022.04.002
    [6] Yemeli Elida Joelle, Temgoua Emile, Kengni Lucas, Ambrosi Jean-Paul, Momo-nouazi Mathieu, Silatsa-Tedou Francis Brice, Wamba Franck Robean, Tchakam-Kamtchueng Brice2021:  Hydro-geochemistry of groundwater and surface water in Dschang town (West Cameroon): Alkali and alkaline-earth elements ascertain lithological and anthropogenic constraints, Journal of Groundwater Science and Engineering, 9, 212-224. doi: 10.19637/j.cnki.2305-7068.2021.03.004
    [7] Nguyen Van Hoang2021:  Determination of groundwater solute transport parameters in finite element modelling using tracer injection and withdrawal testing data, Journal of Groundwater Science and Engineering, 9, 292-303. doi: 10.19637/j.cnki.2305-7068.2021.04.003
    [8] TANG Hai-long, LU Shan-long, CHENG Yan-pei, GE Li-qiang, ZHANG Jian-kang, DONG Hua, SHAO Huai-yong2019:  Analysis of dynamic changes and influence factors of Lake Balkhash in the last twenty years, Journal of Groundwater Science and Engineering, 7, 214-223. doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.002
    [9] HU Zun-fang, KANG Feng-xin, ZOU An-de, YU Lin-song, LI Yang, TIAN Tong-liang, KANG Gui-ling2019:  Evolution trend of the water quality in Dongping Lake after South-North Water Transfer Project in China, Journal of Groundwater Science and Engineering, 7, 333-339. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.004
    [10] SONG Hong-wei, MU Hai-dong, XIA Fan2018:  Analyzing the differences of brackish-water in the Badain Lake by geophysical exploration method, Journal of Groundwater Science and Engineering, 6, 187-192. doi: 10.19637/j.cnki.2305-7068.2018.03.004
    [11] ZHU Heng-hua, JIA Chao, XU Yu-liang, YU Ze-min, YU Wei-jiang2018:  Study on numerical simulation of organic pollutant transport in groundwater northwest of Laixi, Journal of Groundwater Science and Engineering, 6, 293-305. doi: 10.19637/j.cnki.2305-7068.2018.04.005
    [12] ZHANG Yu-qin, WANG Guang-wei, WANG Shi-qin, YUAN Rui-qiang, TANG Chang-yuan, SONG Xian-fang2018:  Hydrochemical characteristics and geochemistry evolution of groundwater in the plain area of the Lake Baiyangdian watershed, North China Plain, Journal of Groundwater Science and Engineering, 6, 220-233. doi: 10.19637/j.cnki.2305-7068.2018.03.007
    [13] WANG Kui-feng, XU Meng, CHEN Xiao-man2017:  The comprehensive evaluation on resource environmental bearing capacity of central cities in the Yellow River Delta-A case study on Dongying City, Journal of Groundwater Science and Engineering, 5, 354-363.
    [14] LI Guo-ao, YAN Lei, CHEN Zhen-he, LI Ye2017:  Determination of organic carbon in soils and sediments in an automatic method, Journal of Groundwater Science and Engineering, 5, 124-129.
    [15] SHI Jian-sheng, LIU Chang-li, DONG Hua, YAN Zhen-peng, WANG Yan-jun, LIU Xin-hao, GUO Xiu-yan, JIAO Hong-jun, YIN Mi-ying, HOU Huai-ren2014:  Stability assessment and risk analysis of aboveground river in lower Yellow River, Journal of Groundwater Science and Engineering, 2, 1-18.
    [16] CAO Wen-geng, CHEN Nan-xiang, ZHANG Yi-long, DONG Qiu-yao2014:  Distribution of arsenic in sediment of Hangjinhou Banner- Linhe transect in Hetao Basin, North China, Journal of Groundwater Science and Engineering, 2, 87-96.
    [17] Zhao-xian Zheng, Xiao-si Su2013:  Risk Assessment on Organic Contamination of Shallow Groundwater of an Oilfield in Northeast China, Journal of Groundwater Science and Engineering, 1, 75-82.
    [18] Zhao Wang, Jiansheng Shi, Zhaoji Zhang, Yuhong Fei2013:  Organic Contamination of Soil and Goundwater in the Piedimont Plain of the Taihang Mountains, Journal of Groundwater Science and Engineering, 1, 74-81.
    [19] Yan Zhang, Shuai Song, Jing Li, Fadong Li, Guangshuai Zhao, Qiang Liu2013:  Stable Isotope Composition of Rainfall, Surface Water and Groundwater along the Yellow River, Journal of Groundwater Science and Engineering, 1, 82-88.
    [20] Jingli Shao, Yali Cui, Yunzhang Zhao2013:  A Study on Infiltration and Groundwater Development in the Influent Zone of the Perched Lower Yellow River, Journal of Groundwater Science and Engineering, 1, 46-53.
  • 加载中
图(10) / 表ll (2)
计量
  • 文章访问数:  588
  • HTML全文浏览量:  199
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-24
  • 录用日期:  2021-04-20
  • 修回日期:  2021-04-20
  • 网络出版日期:  2021-08-04
  • 刊出日期:  2021-06-28

目录

    /

    返回文章
    返回