• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Groundwater level thresholds for maintaining groundwater-dependent ecosystems in northwest China: Current developments and future challenges

Ming-yang Li Chao-zhu Li Feng Dong Peng Jiang Yong-qiang Li

Li MY, Li CZ, Dong F, et al. 2024. Groundwater level thresholds for maintaining groundwater-dependent ecosystems in northwest China: Current developments and future challenges. Journal of Groundwater Science and Engineering, 12(4): 453-462 doi:  10.26599/JGSE.2024.9280032
Citation: Li MY, Li CZ, Dong F, et al. 2024. Groundwater level thresholds for maintaining groundwater-dependent ecosystems in northwest China: Current developments and future challenges. Journal of Groundwater Science and Engineering, 12(4): 453-462 doi:  10.26599/JGSE.2024.9280032

doi: 10.26599/JGSE.2024.9280032

Groundwater level thresholds for maintaining groundwater-dependent ecosystems in northwest China: Current developments and future challenges

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Table  1.   Methods for quantifying groundwater level thresholds to protect GDEs

    Methods Explanations Pros/Cons
    Methods Based on Vegetation Indicators Species Diversity Analysis Determine groundwater thresholds by analyzing the changes in species diversity at different groundwater depths (e.g. Species richness, Shannon-Weiner index, and Simpson index) Provide direct information about the response of vegetation to groundwater changes.Indicate the overall health and functioning of the ecosystem.Cannot provide insights into the ecological and hydrological processes affecting vegetation responses to groundwater changes.Limited by data availability due to difficulty in obtaining data.
    Vegetation Cover Analysis Determine groundwater thresholds by analyzing the changes in vegetation cover at different groundwater depths
    Vegetation Growth Indicator Analysis Determine groundwater thresholds by analyzing the changes in plant growth indicators at different groundwater depths (e.g. height, biomass)
    Methods Based on Models Empirical Models Establish models based on historical data and expert experience to predict groundwater thresholds (Basic statistical analysis methods, e.g. linear correlations, stress gradients, ordination) Does not require complex models and a large number of parameters.Can use existing/ historical observation data for analysis.Uncertainties due to large data gaps may exist.
    Statistical Models Establish models based on statistical analysis methods to analyze the relationship between groundwater and vegetation, and determine groundwater thresholds (e.g. Functional linear model, Bayesian model, Gaussian regression model, forest gradient model) Can intuitively reflect the relationship between groundwater thresholds and the ecological environment.Can deal with missing data.Most models require large sample sizes.Cannot explain the physical mechanism.Limited by the data distribution and model assumptions.
    Mechanistic Models Establish models based on ecological hydrological processes to simulate the relationship between groundwater and vegetation and determine groundwater thresholds (e.g. MODFLOW) Can provide quantitative relationships between groundwater level and vegetation.Can explain the eco-hydrological processes influencing vegetation responses to groundwater changes.Require calibration with field data.Uncertainty due to simplifications and assumptions.
    Methods Based on Remote Sensing Remote Sensing Image Analysis Determine groundwater thresholds by analyzing vegetation cover and growth status at different groundwater depths using remote sensing images (e.g. NDVI method, NDVI-DTG method) Allow for large-scale analysis of vegetation.Time-series analysis: Can be used to time-series analysis of changes in vegetation.Limitations in spatial and temporal resolution, which can affect the accuracy of results.Can be affected by atmospheric conditions and topography, requiring careful processing and correction.
    Remote Sensing Inversion Models Establish models based on remote sensing data and ground-based measured data to invert groundwater depth and determine groundwater thresholds
    下载: 导出CSV

    Table  2.   The suitable ranges of depth to groundwater and thresholds for maintaining healthy GDEs, NW China

    Area GDEs Species and communities Suitable (m) Thresholds (m) Sources
    Middle and lower Tarim Rive Basin Desert riparian forests Mixed forest-shrub-herb: Populus euphratica, Tamarix spp., Phragmites australis 2–4 8 Li et al. 2013
    2–4 6 Hao et al. 2010
    Forest-shrub: Populus euphratica, Tamarix spp., Haloxylon ammodendron 4–8 8 Li et al. 2013
    4–6 6 Hao et al. 2010
    Herb: Phragmites australis 0.5–1 2 Li et al. 2013
    Manaz River Valley (Junggar Basin) Desert riparian vegetation Shrub: Ulmus glaucescens Franch; Tamarix spp 1–4 5.5 Cheng et al. 2018
    Herb: Phragmites australis 0.5–1.5 2.5 Cheng et al. 2018
    Lower Heihe River Basin Desert riparian forests Forest-shrub: Populus euphratica, Tamarix spp. 2–4 4 Ding et al. 2017 Feng et al. 2012
    Desert Terrestrial GDEs (Ejina oases) Shrub: Tamarix spp., Nitraria spp., Haloxylon ammodendron, Artemisia arenaria 2–5 5 Jin et al. 2010; Yu and Wang, 2012
    Desert wetland(Juyan lake wetland) Salt marsh grassland: Phragmites australis, Agropyron cristatum, Tamarix ramosissima 1.5–2 2 Feng et al. 2012
    Middle and lower Shiyanghe Rive Basin Desert riparian vegetation Shrubs: Nitraria spp., Tamarix spp., Reaumuria soongorica, Lycium ruthenicum 8.6–13.5 14 Liu et al. 2012
    Desert Terrestrial GDEs (Minqin oases) Shrubs: Nitraria spp., Tamarix spp., Haloxylon ammodendron, Kalidium foliatum, Reaumuria soongorica, Artemisia arenaria 2.5–3.9 4 Cao et al. 2020
    Desert wetland (Qingtuhu lake wetland) Herb-shrub ((Halophytic Marsh Grassland): Phragmites australis,Kalidium foliatum 0.5–2.0 2 Hu et al. 2021; Zhang, 2021
    3 Liu et al. 2022
    Shulehe River Basin Desert Terrestrial GDEs (Oases) Shrub-herb: Alhagi sparsifolia, Nitraria spp, Sophora alopecuroides, Phragmites australis 2–4 6 Ma et al. 2005; Ye et al. 2013
    Desert wetland (Xihu lake, Dunhuang) Herb (Halophytic Marsh Grassland: About 0-5 km from lake): Agropyron cristatum, Phragmites australis 1.07–2.03 Chen et al. 2021
    Shrub-herb (desert woodland: About 10–50 km from lake): Lycium ruthenicum, Phragmites australis, Populus euphratica, Tamarix ramosissima 2.78–5.42 Chen et al. 2021
    Qaidam Basin Desert wetland (Spring and lake wetland) Salt marsh grassland: Phragmites australis, Agropyron cristatum, Kalidium foliatum, Nitraria spp. 0.3–0.9 1.1 Dang et al. 2019
    Desert riparian vegetation Herb-shrub: Apocynum venetum, Nitraria spp., Tamarix ramosissim, Tamarix spp., Artemisia arenaria, Phragmites australis, Kalidium foliatum, Achnatherurn 1.4–3.5 5 Dang et al. 2019
    Northern Ordos basin Desert wetland (Riparian and lake wetland) Shrub: Salix mongolica, Artemisia sphaero—cephala Krasch, Pulus simonii Carr. 1.5–3 5 Yang et al. 2006
    下载: 导出CSV
  • Cao L, Nie ZL, Liu M, et al. 2020. Changes in natural vegetation growth and groundwater depth and their relationship in the Minqin oasis in the Shiyang River Basin. Hydrogeology & Engineering Geology, 47(3): 25−33. (in Chinese) DOI: 10.16030/j.cnki.issn.1000-3665.201907010.
    Chen GG, Yue DX, Zhou YY, et al. 2021. Driving factors of community-level plant functional traits and species distributions in the desert-wetland ecosystem of the Shule River Basin, China. Land Degradation and Development, 32(1): 323-337. DOI: 10.1002/ldr.3624.
    Chen YN, Wang Q, Li WH, et al. 2006. Research on rational groundwater level represented by vegetation physiological and ecological data—a case study of ecological restoration process in the lower reaches of Tarim River. Chinese Science Bulletin, (S1): 7−13. (in Chinese)
    Cheng Y, Chen L, Yin JQ, et al. 2018. Depth interval study of vegetation ecological groundwater in the water source area at Manaz River valley. Environmental Science & Technology, 41(2): 26−33. (in Chinese)
    Ding JY, Zhao WW, Daryanto S, et al. 2017. The spatial distribution and temporal variation of desert riparian forests and their influencing factors in the downstream Heihe River basin, China. Hydrology and Earth System Sciences, 21(5): 1–27. DOI: 10.5194/hess-21-2405-2017.
    Dang XY, Lu N, Gu XF, et al. 2019. Groundwater threshold of ecological vegetation in Qaidam Basin. Hydrogeology & Engineering Geology, 46(03): 1−8. (in Chinese) DOI: 10.16030/j.cnki.issn.1000-3665.2019.03.01.
    Eamus D, Zolfaghar S, Villalobos-Vega R, et al. 2015. Groundwater-dependent ecosystems: Recent insights from satellite and field-based studies. Hydrology and Earth System Sciences, 19(10): 4229−4256. DOI: 10.5194/hess-19-4229-2015.
    Fan ZL, Chen YN, Li HP, et al. 2008. Determination of suitable ecological groundwater depth in arid areas in North west part of China. Journal of Arid Land Resources and Enviorment, 22(2): 5. DOI: 10.3969/j.issn.1003-7578.2008.02.001.
    Feng Q, Peng JZ, Li JG, et al. 2012. Using the concept of ecological groundwater level to evaluate shallow groundwater resources in hyperarid desert regions. Arid Land, 4(4): 378−389. DOI: 10.3724/SP.J.1227.2012.00378.
    Gao CY. 2000. Determination of the best buried depth value in the arid zone. Groundwater, 3: 105−106. (in Chinese)
    Groffman P, Baron J, Blett T, et al. 2006. Ecological thresholds: The key to successful environmental management or an important concept with no practical application? Ecosystems, 9: 1–13. DOI: 10.1007/s10021-003-0142-z.
    Guan XY, Wang SL, Gao ZY, et al. 2012. Patio-temporal variability of soil salinity and its relationship with the depth to groundwater in salinization irrigation district. Acta Ecologica Sinica, 32(4): 9. (in Chinese) DOI: 10.5846/stxb201012281863.
    Hao XM, Li WH, Huang X, et al. 2010. Assessment of the groundwater threshold of desert riparian forest vegetation along the middle and lower reaches of the Tarim River, China. Hydrological Process, 24(2): 178−186. DOI: 10.1002/hyp.7432.
    Huang F, Zhang YD, Zhang DR, et al. 2019. Environmental groundwater depth for Groundwater-Dependent terrestrial ecosystems in arid/semiarid regions: A review. International Journal of Environmental Research and Public Health, 16(5): 763. DOI: 10.3390/ijerph16050763.
    Hu S, Ma R, Sun ZY, et al. 2021. Determination of the optimal ecological water conveyance volume for vegetation restoration in an arid inland river basin, northwestern China. Science of the Total Environment, 78: 147775. DOI: 10.1016/j.scitotenv.2021.147775.
    Irvine DJ, Crabbe RA. 2024. Defining thresholds to protect groundwater-dependent vegetation. Nature Water, 2: 306−307. DOI: 10.1038/s44221-024-00229-2.
    Jin XM. 2010. Quantitative relationship between the desert vegetation and groundwater depth in Ejina Oasis, the Heihe River Basin. Earth Science Frontiers, 17(6): 181−186. (in Chinese) DOI: 10.3788/gzxb20103907.1340.
    Kath J, Boulton AJ, Harrison ET, et al. 2018. A conceptual framework for ecological responses to groundwater regime alteration (FERGRA). Ecohydrology, 11: e2010. DOI: 10.1002/eco.2010.
    Li WH, Zhou HH, Fu AH, et al. 2013. Ecological response and hydrological mechanism of desert riparian forest in inland river, northwest of China. Ecohydrology, 6(6): 949−955. DOI: 10.1002/eco.1385.
    Liu HJ, Liu SZ, Li Y, et al. 2012. Response of riparian vegetation to the change of groundwater level at middle and lower reaches of the Shiyang River. Arid Zone Research, 29(2): 335−341. (in Chinese) DOI: 10.13866/j.azr.2012.02.007.
    Liao ZL, Ma ZZ, Cheng SH, et al. 2018. Dominant critical water level of groundwater and its determing method. Water Resources and Hydropower Engineering, 49(3): 26−32. (in Chinese) DOI: 10.13928/j.cnki.wrahe.2018.03.004.
    Liu M, Nie TL, Cao L, et al. 2021. Comprehensive evaluation on the ecological function of groundwater in the Shiyang River watershed. Journal of Groundwater Science and Engineering, 9(4): 326−340. DOI: 10.19637/j.cnki.2305-7068.2021.04.006.
    Liu PF, Zhang GH, Cui SJ, et al. 2022. Threshold value of ecological water table and dual control technology of the water table and its quantity in the salinized farmland around wetland in arid areas. Hydrogeology & Engineering Geology, 49(5): 10. (in Chinese) DOI: 10.16030/j.cnki.issn.1000-3665.202202054.
    Ma XH, Wang S. 2005. The relationship of vegetation deterioration and groundwater level, mineral level in Shulehe valley of Gansu Province. Journal of Gansu Forestry Science and Technology, 30(2): 53−54. (in Chinese) DOI: 10.3969/j.issn.1006-0960.2005.02.015.
    Mu EL, Yan L, Ding AZ. et al. 2020. Determination of controlled limit value of groundwater level depth and management practice in Xi'an, China. Scientific Reports, 10: 15505. DOI: 10.1038/s41598-020-72523-4.
    Moritz MA, Hurteau MD, Suding KN, et al. 2013. Bounded ranges of variation as a framework for future conservation and fire management. Annals of the New York Academy of Sciences, 1286: 92–107. DOI: 10.1111/nyas.12104.
    Rohde MM, Saito L, Smith R. 2020. Groundwater Thresholds for Ecosystems: A Guide for Practitioners. Global Groundwater Group, The Nature Conservancy.
    Rohde MM, Stella JC, Singer MB, et al. 2024. Establishing ecological thresholds and targets for groundwater management. Nature Water, 2: 312−323. DOI: 10.1038/s44221-024-00221-w.
    Wang SX, Wu B, Yang PN, et al. 2011. Determination of the ecological groundwater depth considering ecological integrity over oasis irrigation areas in the Yanqi Basin. Resources Science, 33(3): 422−430. (in Chinese)
    Wang Y, Chen MJ, Yan L, et al. 2021. A new method for quantifying threshold water tables in a phreatic aquifer feeding an irrigation district in northwestern China. Agricultural Water Management, 244: 106595. DOI: 10.1016/j.agwat.2020.106595.
    Yang HF, Meng RF, Bao XL, et al. 2022. Assessment of water level threshold for groundwater restoration and over-exploitation remediation the Beijing-Tianjin-Hebei Plain. Journal of Groundwater Science and Engineering, 10(2): 113−127. DOI: 10.19637/j.cnki.2305-7068.2022.02.002.
    Yang ZY, Wang WK, Huang JT, et al. 2006. Research on buried depth of eco-safety about groundwater table in the blown-sand region of the Northern Shaanxi Province. Journal of Northwest Sci-Tech University of Agriculture and Forestry (Natural Science Edition), 34(8): 67−74. (in Chinese) DOI: 10.1016/S1872-1508(06)60066-1.
    Ye HM, Chen SH, Sheng F, et al. 2013. Research on dynamic changes of land cover and its correlation with groundwater in the Shule River Basin. Journal of Hydraulic Engineering, 44(1): 83−90. (in Chinese) DOI: 10.13243/j.cnki.slxb.2013.01.002.
    Yu JJ, Wang P. 2012. Relationship between water and vegetation in the Ejina delta. Bulletin of the Chinese Academy of Sciences, 26(1): 68−75. (in Chinese)
    Zhang CC, Shao JL, Li CJ, et al. 2003. A Study on the ecological groundwater table in the North China plain. Journal of Changchun University of Science and Technology, (03): 323−326. (in Chinese) DOI: 10.13278/j.cnki.jjuese.2003.03.013.
    Zhang YY, Chen X, Gao M, et al. 2020. Meta-analysis of ecological depth to groundwater table and its influencing factors in aird region of Northwest China. South-to-North Water Diversion and Water Science & Technology, 18(5): 57−65. (in Chinese) DOI: 10.13476/j.cnki.nsbdqk.2020.0092.
    Zhai JQ, Dong YY, Qi SL, et al. 2021. Advances in ecological groundwater level threshold in arid oasis regions. Journal of China Hydrology, 41(1): 7−14. (in Chinese) DOI: 10.19797/j.cnki.1000-0852.20195391.
    Zhang YN, Man DQ, Han FG, et al. 2021. A research on growth characteristics of phragmites australis population from wetland to desert in middle and lower reaches of Shiyang River Water-Shed Area. Botanical Research, 10(1): 19−26. (in Chinese) DOI: 10.12677/BR.2021.101004.
  • [1] Djafer Khodja Hakim, Aichour Amina, Metaiche Mehdi, Ferhati Ahmed2024:  Groundwater quality assessment for drinking and irrigation purposes in Boumerdes Region, Algeria, Journal of Groundwater Science and Engineering, 12, 397-410. doi: 10.26599/JGSE.2024.9280030
    [2] Jun Zhang, Rong-zhe Hou, Kun Yu, Jia-qiu Dong, Li-he Yin2024:  Impact of water table on hierarchically nested groundwater flow system, Journal of Groundwater Science and Engineering, 12, 119-131. doi: 10.26599/JGSE.2024.9280010
    [3] Guo-Qiang Yu, Qian Wang, Li-Feng Zhu, Xia Zhang2023:  Regulation of vegetation pattern on the hydrodynamic processes of erosion on hillslope in Loess Plateau, China, Journal of Groundwater Science and Engineering, 11, 4-19. doi: 10.26599/JGSE.2023.9280002
    [4] Parisa Kazerani, Ali Naghi Ziaei, Kamran Davari2023:  Determining safe yield and mapping water level zoning in groundwater resources of the Neishabour Plain, Journal of Groundwater Science and Engineering, 11, 47-54. doi: 10.26599/JGSE.2023.9280005
    [5] Fatemeh Einlo, Mohammad Reza Ekhtesasi, Mehdi Ghorbani, Parviz Abdinejad2023:  Determine the most appropriate strategy for groundwater management in arid and semi-arid regions, Abhar Plain, Iran, Journal of Groundwater Science and Engineering, 11, 97-115. doi: 10.26599/JGSE.2023.9280010
    [6] Vinay Kumar Gautam, Mahesh Kothari, P.K. Singh, S.R. Bhakar, K.K. Yadav2022:  Analysis of groundwater level trend in Jakham River Basin of Southern Rajasthan, Journal of Groundwater Science and Engineering, 10, 1-9. doi: 10.19637/j.cnki.2305-7068.2022.01.001
    [7] Tanzeel Khan, Muhammad Akhtar Malik, Gohram Malghani, Rabia Akhtar2022:  Comparative analysis of bacterial contamination in tap and groundwater: A case study on water quality of Quetta City, an arid zone in Pakistan, Journal of Groundwater Science and Engineering, 10, 153-165. doi: 10.19637/j.cnki.2305-7068.2022.02.005
    [8] Benadela Laouni, Bekkoussa Belkacem, Gaidi Laouni2022:  Multivariate analysis and geochemical investigations of groundwater in a semi-arid region, case of superficial aquifer in Ghriss Basin, Northwest Algeria, Journal of Groundwater Science and Engineering, 10, 233-249. doi: 10.19637/j.cnki.2305-7068.2022.03.003
    [9] Yang Hui-feng, Meng Rui-fang, Bao Xi-lin, Cao Wen-geng, Li Ze-yan, Xu Bu-yun2022:  Assessment of water level threshold for groundwater restoration and over-exploitation remediation the Beijing-Tianjin-Hebei Plain, Journal of Groundwater Science and Engineering, 10, 113-127. doi: 10.19637/j.cnki.2305-7068.2022.02.002
    [10] Luong Van Viet2021:  Effects of urbanization on groundwater level in aquifers of Binh Duong Province, Vietnam, Journal of Groundwater Science and Engineering, 9, 20-36. doi: 10.19637/j.cnki.2305-7068.2021.01.003
    [11] Zhu Liang, Liu Jing-tao, Yang Ming-nan, Zhang Yu-xi, Wen De-ping2021:  Evolutionary trend of water cycle in Beichuan River Basin of China under the influence of vegetation restoration, Journal of Groundwater Science and Engineering, 9, 202-211. doi: 10.19637/j.cnki.2305-7068.2021.03.003
    [12] Dang Xue-ya, Lu Na, Gu Xiao-fan, Jin Xiao-mei2021:  The relationship between groundwater and natural vegetation in Qaidam Basin, Journal of Groundwater Science and Engineering, 9, 341-349. doi: 10.19637/j.cnki.2305-7068.2021.04.007
    [13] Zhang Han, Chen Zong-yu, Tang Chang-yuan2021:  Quantifying groundwater recharge and discharge for the middle reach of Heihe River of China using isotope mass balance method, Journal of Groundwater Science and Engineering, 9, 225-232. doi: 10.19637/j.cnki.2305-7068.2021.03.005
    [14] KHELFAOUI Hakim, DAJBRI Larbi, LAKHAL Fatima Zohra, CHAFFAI Hicham, HANI Azzedine, SAYAD Lamine2020:  Determination of the origin of mineralization and groundwater salinity in the Adrar region in the southwest of Algeria, Journal of Groundwater Science and Engineering, 8, 158-171. doi: 10.19637/j.cnki.2305-7068.2020.02.007
    [15] ZHOU Xun2017:  Arsenic distribution and source in groundwater of Yangtze River Delta economic region, China, Journal of Groundwater Science and Engineering, 5, 343-353.
    [16] Ramasamy Jayakumar, Eunhee Lee2017:  Climate change and groundwater conditions in the Mekong Region–A review, Journal of Groundwater Science and Engineering, 5, 14-30.
    [17] MA Luan, WANG Guang-cai, SHI Zhe-ming, GUO Yu-ying, XU Qing-yu, HUANG Xu-juan2016:  Simulation of groundwater level recovery in abandoned mines, Fengfeng coalfield, China, Journal of Groundwater Science and Engineering, 4, 344-353.
    [18] Ramasamy Jayakumar2015:  Groundwater level monitoring-importance global groundwater monitoring network, Journal of Groundwater Science and Engineering, 3, 295-305.
    [19] ZHOU Li-ling, CHENG Zhe, DUAN Lei, WANG Wen-ke2015:  Distribution of groundwater salinity and formation mechanism of fresh groundwater in an arid desert transition zone, Journal of Groundwater Science and Engineering, 3, 268-279.
    [20] JIA Rui-liang, ZHOU Jin-long, LI Qiao, LI Yang2015:  Analysis of evaporation of high-salinity phreatic water at a burial depth of 0 m in an arid area, Journal of Groundwater Science and Engineering, 3, 1-8.
  • 加载中
表ll (2)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  64
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-20
  • 录用日期:  2024-10-21
  • 网络出版日期:  2024-12-06
  • 刊出日期:  2024-12-15

目录

    /

    返回文章
    返回