• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Origin and risk assessment of natural radioactivity in groundwater from the Eastern Gonghe Basin, Tibetan Plateau

Zhao-xuan Niu Zhi-hui Deng Xue Niu Dong-fang Chen Gui-lin Zhu Wen-hao Xu Lin-you Zhang Qing-da Feng

Niu ZX, Deng ZH, Niu X, et al. 2025. Origin and risk assessment of natural radioactivity in groundwater from the Eastern Gonghe Basin, Tibetan Plateau. Journal of Groundwater Science and Engineering, 13(3): 301-311 doi:  10.26599/JGSE.2025.9280056
Citation: Niu ZX, Deng ZH, Niu X, et al. 2025. Origin and risk assessment of natural radioactivity in groundwater from the Eastern Gonghe Basin, Tibetan Plateau. Journal of Groundwater Science and Engineering, 13(3): 301-311 doi:  10.26599/JGSE.2025.9280056

doi: 10.26599/JGSE.2025.9280056

Origin and risk assessment of natural radioactivity in groundwater from the Eastern Gonghe Basin, Tibetan Plateau

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Geological structure and sampling point location map of the Gonghe Basin

    Figure  2.  Relationship between gross-α and gross-β activities in groundwater samples

    Figure  3.  Relationship between gross-α/gross-β activity concentrations and pH values in groundwater samples from the Gonghe Basin

    Figure  4.  Relationship between gross-α/gross-β activity concentrations and groundwater temperature in samples from the Gonghe Basin

    Figure  5.  Relationship between gross-β and 40K concentration in groundwater samples from the Gonghe Basin

    Table  1.   Measured active concentration of gross-α, gross-β, and associated radionuclide contents in groundwater samples from the Gonghe Basin

    Field number pH T U Th 226Ra 40K gross-α gross-β
    °C μg/L Bq/L
    GR-2 8.36 19.2 0.209 0.005 0.008 0.166 0.079 0.141
    AYH 7.35 30.9 0.098 0.008 <0.008 0.159 0.064 0.143
    XTM-1 8.48 27.8 1.06 0.006 0.009 0.079 0.206 0.116
    STM-1 8.23 25.4 2.01 0.003 <0.008 0.069 0.262 0.089
    STM-2 8.17 17.1 4.55 <0.002 0.008 0.083 0.151 0.114
    DR-4 - - 0.045 0.005 <0.008 0.252 0.069 0.152
    GSJ - - 6.48 <0.002 <0.008 0.099 0.097 0.136
    GH-02 - - 0.076 0.008 0.04 0.795 0.191 0.146
    GH-04 - - 0.006 0.001 <0.008 0.5 0.067 0.064
    QNH 5.59 70.3 0.038 0.003 <0.008 1.59 1.19 1.26
    ZCS 5.19 72.8 0.164 0.004 0.809 0.66 1.13 0.613
    XJ 5.74 55.6 0.044 0.015 <0.008 0.219 <0.036 0.213
    下载: 导出CSV

    Table  2.   Comparison of gross α/β activity concentrations in groundwater from this study with values reported in the literature (Bq/L)

    Country/Region Type gross-α gross-β References
    Nigeria Drinking water 0.0058–0.174 0.0147–0.2225 Fasae et al. (2013)
    Australia Drinking water 1.40 1.15 Kleinschmidt (2004)
    Germany Drinking water 0.013–0.97 Beyermann et al. (2010)
    Italy Drinking water 0.25–1.1 Jia et al. (2009)
    Serbia Drinking water 0.029–0.21 MDC-0.4 N Todorović et al. (2012)
    Singapore Drinking water < MDA 0.228–0.258 Ong JX et al. (2024)
    Finland Drilled well water 2.4 1.5 Salonen (1994)
    Turkey Groundwater 0.192 0.579 Turhan et al. (2013)
    Brazil (Sao Paulo) Groundwater 0.001–0.4 0.12–0.86 Bonotto et al. (2008)
    Nigeria Groundwater 0.15±0.003 6.0±0.1 Agbalagba et al. (2013)
    Ghana Groundwater 0.0157–0.198 0.122–0.28 Darko et al. (2015)
    Southwestern Caspian Groundwater 0.016–1 0.022–0.63 Jowzaee (2013)
    United Arab Emirates Groundwater 1.4±4.1 1.5±1.52 Murad et al. (2014)
    Aqaba, Jordan Groundwater 0.64 0.71 Awadallah M et al. (2012)
    Saudi Arabia, Hail Groundwater 2.15 2.60 EI and AA (2014)
    Saudi Arabia, North-western Groundwater 3.15±0.26 5.39±0.44 Alkhomashi et al. (2016)
    Saudi Arabia, Northern region Groundwater 3.51±0.33 3.48±0.36 Fahad I et al. (2020)
    Gonghe basin Groundwater 0.06–1.19 0.06–1.26 Present work
    下载: 导出CSV

    Table  3.   Pearson correlation coefficient matrix for radioactive element parameters in groundwater samples from the Gonghe Basin

    Item U Th 226Ra 40K Rn gross-α gross-β
    U 1
    Th −0.560 1
    226Ra −0.212 0.023 1
    40K −0.400 −0.047 0.521 1
    Rn 0.169 0.046 −0.465 −0.706 1
    gross-α −0.256 −0.062 0.979 0.762 0.719 1
    gross-β −0.249 −0.074 0.986 0.873 −0.672 0.911 1
    下载: 导出CSV

    Table  4.   Estimated annual effective dose of α emitters in groundwater samples from the Gonghe Basin

    No.gross-αAnnual effective dose /μSv/a
    Bq/L238U234U230Th226Ra210Po232Th228Th
    GR-20.0792.602.8312.1116.1569.2013.264.15
    AYH0.0642.102.299.8113.0856.0610.753.36
    XTM-10.2066.777.3731.5842.11180.4634.5910.83
    STM-10.2628.619.3740.1653.55229.5143.9913.77
    STM-20.1514.965.4023.1530.86132.2825.357.94
    DR-40.0692.272.4710.5814.1060.4411.593.63
    GSJ0.0973.193.4714.8719.8384.9716.295.10
    GH-020.1916.276.8329.2839.04167.3232.0710.04
    GH-040.0672.202.4010.2713.6958.6911.253.52
    QNH1.1939.0942.57182.43243.241042.44199.8062.55
    ZCS1.1337.1240.42173.23230.97989.88189.7359.39
    ZNH0.0361.181.295.527.3631.546.041.89
    下载: 导出CSV

    Table  5.   Annual effective dose of β emitters in groundwater of the study area

    No. gross-β Annual effective dose of β radiation /μSv/a
    Bq/L 228Ra 210Pb
    GR-2 0.141 7.10 7.10
    AYH 0.143 7.20 7.20
    XTM-1 0.116 5.84 5.84
    STM-1 0.089 4.48 4.48
    STM-2 0.114 5.74 5.74
    DR-4 0.152 7.66 7.66
    GSJ 0.136 6.85 6.85
    GH-02 0.146 7.35 7.35
    GH-04 0.064 3.22 3.22
    QNH 1.26 63.47 63.47
    ZCS 0.613 30.88 30.88
    ZNH 0.213 10.73 10.73
    下载: 导出CSV
  • Agbalagba EO, Avwiri GO, Chadumoren YE. 2013. Gross α and β activity concentration and estimation of adults and infants dose intake in surface and ground water of ten oil fields environment in Western Niger Delta of Nigeria. Journal of Applied Sciences and Environmental Management, 17(2): 267−277. DOI: 10.4314/jasem.v17i2.10.
    Alkhomashi N, Al Hamarneh FI, Almasoud IF. 2016. Determination of natural radioactivity in irrigation water of drilled wells in northwestern Saudi Arabia. Chemosphere, 144: 1928−1936. DOI: 10.1016/j.chemosphere.2015.10.094.
    Alshamsi DM, Murad AA, Aldahan A, et al. 2013. Uranium isotopes in carbonate aquifers of arid region setting (Article). Journal of Radioanalytical and Nuclear Chemistry, 298(3): 1899−1905. DOI: 10.1007/s10967-013-2558-z.
    Awadallah M, Al Hamarneh IF, Al-Abed T, et al. 2012. Natural radioactivity in tap water and associated age-dependent dose and lifetime risk assessment in Amman, Jordan. Applied Radiation and Isotopes, 70(4): 692−698. DOI: 10.1016/j.apradiso.2011.12.002.
    Beyermann M, Bünger T, et al. 2010. Occurrence of natural radioactivity in public water supplies in Germany: 238U, 234U, 235U, 228Ra, 226Ra, 222Rn, 210Pb, 210Po and gross α activity concentrations. Radiation Protection Dosimetry, 141: 72−81. DOI: 10.1093/rpd/ncq139.
    Bonotto DM, Bueno TO, Tessari BW, et al. 2008. The natural radioactivity in water by gross alpha and beta measurements. Radiation Measurements. 44(1): 92–101. DOI: 10.1016/j.radmeas.2008.10.015.
    Contreras VJ, Chávez CM, Onorio CO, et al. 2022. Radiological study of water for human use and consumption in rural areas of the central zone of the State of Veracruz, Mexico. Nature Environment and Pollution Technology, 21(4): 1955−1962. DOI: 10.46488/NEPT.2022.V21I04.050.
    Dai M. 2020. Hydrogeochemical characteristics and formation and evolution of geothermal water in Guide area, Qinghai province. China University of Geosciences (Beijing). (in Chinese) DOI: 10.27493/d.cnki.gzdzy.2020.000349.
    Darko G, Faanu A, Akoto, O. 2015. Assessment of the activity of radionuclides and radiological impacts of consuming underground water in Kumasi, Ghana. Environmental Earth Sciences, 73(1): 399−404. DOI: 10.1007/s12665-014-3433-0.
    EI Shabana, AA Kinsara. 2014. Radioactivity in the groundwater of a high background radiation area. Journal of Environmental Radioactivity, 137. DOI: 10.1016/j.jenvrad.2014.07.013.
    Esi OE, Agbalagba EO, Avwiri G O. 2021. Impact of produced water discharge on the gross alpha and gross beta activity concentrations and radiological health risk on drinking water sources in coastal areas of Nigeria. International Journal of Ambient Energy, 42(1): 18−28. DOI: 10.4103/RPE.RPE_24_20.
    Fahad I Almasoud, Zaid Q Ababneh, Yousef J, et al. 2020. Assessment of radioactivity contents in bedrock groundwater samples from the northern region of Saudi Arabia. Chemosphere, 242(C). DOI: 10.1016/j.chemosphere.2019.125181.
    Fasae KP. 2013. Gross alpha and beta activity concentrations and committed effective dose due to intake of groundwater in Ado-Ekiti Metropolis; the Capital City of Ekiti State, Southwestern, Nigeria. Journal of Natural Sciences Research, 3(12): 61−66.
    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. 2024. GB/T 14848–2024. Groundwater quality standard. Beijing: Standards Press of China. (in Chinese)
    Giuseppe VL, Valeria A, Vittoria D, et al. 2021. Measurement of natural radionuclides in drinking water and risk assessment in a volcanic region of Italy, Campania. Water, 13(22): 3271−3271. DOI: 10.3390/W13223271.
    Jia GG, Giancarlo Torri, Leandro Magro. 2009. Concentrations of 238U, 234U, 235U, 232Th, 230Th, 228Th, 226Ra, 228Ra, 224Ra, 210Po, 210Pb and 212Pb in drinking water in Italy: reconciling safety standards based on measurements of gross α and β. Journal of Environmental Radioactivity, 100(11): 941−949. DOI: 10.1016/j.jenvrad.2009.07.002.
    Jowzaee Sedigheh. 2013. Determination of selected natural radionuclide concentrations in southwestern Caspian groundwater using liquid scintillation counting. Radiation Protection Dosimetry, 157(2): 234−241. DOI: 10.1093/rpd/nct132.
    Kleinschmidt RI. 2004. Gross alpha and beta activity analysis in water & mdash; a routine laboratory method using liquid scintillation analysis. Applied Radiation and Isotopes, 61: 333−338. DOI: 10.1016/j.apradiso.2004.03.004.
    Laassiri M, Bouh A H, Ziad N, et al. 2025. Annual effective dose and associated health risk estimation using gross alpha and Beta activity concentrations in bottled mineral water in Morocco. Radiation Protection Dosimetry. DOI:  10.1093/RPD/NCAF019.
    María L, Candelaria M, Antonio C, et al. 2022. Estimation of radiation doses due to groundwater intake at a volcanic island: Tenerife (Canary Islands, Spain). Food Control, 135. DOI:  10.1016/J.FOODCONT.2022.108830.
    Murad A, Zhou XD, Yi P, Alshamsi D, et al, 2014. Natural radioactivity in groundwater from the south-eastern Arabian Peninsula and environmental implications. Environmental Monitoring and Assessment, 186(10): 6157. DOI:  10.1007/s10661-014-3846-y.
    N Todorović, J Nikolov, B Tenjović. 2012. Establishment of a method for measurement of gross alpha/beta activities in water from Vojvodina region. Radiation Measurements, 47: 11−12. DOI: 10.1016/j.radmeas.2012.09.009.
    Niu ZX, Niu X, Zhang LY, et al. 2022. Chemical characteristics of Neogene groundwater hot water in Qiabuqia area, Gonghe Basin. Science Technology and Engineering, 22(21): 9025−9033. (in Chinese) DOI: 10.3969/j.issn.1671-1815.2022.21.003.
    Ong JX, Kok JZI, M KK, et al. 2024. Evaluation of tritium, gross alpha and gross beta radioactivity levels in tap and bottled drinking water in Singapore. Journal of Radioanalytical and Nuclear Chemistry, 1–11. DOI: 10.1007/S10967-024-09766-2.
    Peng Y, Ma YS, Liu CL, et al. 2016. Geological characteristics and tectonic significance of the Indosinian granodiorites from the Zongwulong tectonic belt in North Qaidam. Earth Science Frontiers, 23(2): 206−221. (in Chinese) DOI: 10.13745/j.esf.2016.02.020.
    Sadeghi N, Jabbari S, Behzad M. 2024. Gross alpha/beta and radionuclide activity concentrations in soil, plant and some fruits around the Tehran Research Reactor. Applied Radiation and Isotopes, 210111360-. DOI: 10.1016/J.APRADISO.2024.111360.
    Shang WL, Jin MG. 2012. Preliminary analysis on the evolution of groundwater chemical characteristics at Ceke Port, Ejin Banner, Inner Mongolia. Journal of Inner Mongolia Normal University (Natural Science Edition), 41(3). (in Chinese) DOI:  10.3969/j.issn.1001-8735.2012.03.019.
    State Administration for Market Regulation. 2022. GB 5749-2022. Sanitary standard for drinking water. Beijing: Standards Press of China. (in Chinese)
    Turhan S, Oezcltak A, Varinlioglu, et al. 2013. Determination of natural radioactivity by gross alpha and beta measurements in ground water samples. Water Research, 47(9): 3103−3108. DOI: 10.1016/j.watres.2013.03.030.
    UNSCEAR. 2016. Sources, Effects and risks of ionizing radiation. United Nations Publications.
    Uzorka A, Olaniyan OA, Akiyode OO, et al. 2024. Evaluation of radioactivity levels and hazard indices of Th-232, Ra-226 and K-40 in sediment and water samples of Lake Victoria, Jinja, Uganda. Discover Environment, 2(1): 120−120. DOI: 10.1007/S44274-024-00155-W.
    Valli S SN, Raju KM, Satyanarayana V V G, et al. 2024. Assessment of radioactivity levels and dose metrics in coastal drinking water sources of Odisha and Andhra Pradesh, India. Journal of Radioanalytical and Nuclear Chemistry, (prepublish): 1−13. DOI: 10.1007/S10967-024-09840-9.
    Wang Y, Tong J, Li XL, et al. 2020. Geological characteristics and genetic analysis of Qunaihai hot spring in Qinghai province. Journal of East China University of Technology (Natural Science Edition), 43(03): 248−256. (in Chinese) DOI: 10.3969/j.issn.1674-3504.2020.03.006.
    World Health Organization. 2017. Guidelines for drinking-water quality: Fourth edition incorporating the first addendum. Geneva: WHO Press.
    Zhang LK, Liu X, Sun YJ, et al. 2025. Risks and governance of heavy metals in European soil applied phosphate fertilizers. China Geology, 8(3): 560−572. DOI:10.31035/ cg2023147.
    Zhang SS, Zhang L, Tian CS, et al. 2019. Occurrence geological characteristics and development potential of hot dry rock in Gonghe Basin, Qinghai Province. Chinese Journal of Geological Mechanics, 25(04): 501−508. (in Chinese) DOI: 10.12090/j.issn.1006-6616.2019.25.04.048.
  • [1] Li-qiang Ge, Xin Yuan, Liu Yang2025:  Application of metagenomics in the study of groundwater microorganisms, Journal of Groundwater Science and Engineering, 13, 90-100. doi: 10.26599/JGSE.2025.9280041
    [2] Yan-pei Cheng, Fa-wang Zhang, Hua Dong, Xue-ru Wen2024:  Groundwater and environmental challenges in Asia, Journal of Groundwater Science and Engineering, 12, 223-236. doi: 10.26599/JGSE.2024.9280017
    [3] Tian Nan, Chen Yue, Wen-geng Cao, En-lin Mu, Yang Ou, Zhen-sheng Lin, Wei Kang2023:  Effective groundwater level recovery from mining reduction: Case study of Baoding and Shijiazhuang Plain area, Journal of Groundwater Science and Engineering, 11, 278-293. doi: 10.26599/JGSE.2023.9280023
    [4] Duong D Bui, Nghia C Nguyen, Nuong T Bui, Anh T T Le, Dao T Le2017:  Climate change and groundwater resources in Mekong Delta, Vietnam, Journal of Groundwater Science and Engineering, 5, 76-90.
    [5] SRISUK Kriengsak, NETTASANA Tussanee2017:  Climate change and groundwater resources in Thailand, Journal of Groundwater Science and Engineering, 5, 67-75.
    [6] Than Zaw, Maung Maung Than2017:  Climate change and groundwater resources in Myanmar, Journal of Groundwater Science and Engineering, 5, 59-66.
    [7] BAI Bing, CHENG Yan-pei, JIANG Zhong-cheng, ZHANG Cheng2017:  Climate change and groundwater resources in China, Journal of Groundwater Science and Engineering, 5, 44-52.
    [8] Chamroeun SOK, Sokuntheara CHOUP2017:  Climate change and groundwater resources in Cambodia, Journal of Groundwater Science and Engineering, 5, 31-43.
    [9] FEI Yu-hong, ZHANG Zhao-ji, LI Ya-song, GUO Chun-yan, TIAN Xia2015:  Quality evaluation of groundwater in the North China Plain, Journal of Groundwater Science and Engineering, 3, 306-315.
    [10] ZHANG Chuan-mian, GUO Xiao-niu, Richard Henry, James Dendy2015:  Groundwater modelling to help diagnose contamination problems, Journal of Groundwater Science and Engineering, 3, 285-294.
    [11] ZHANG Chun-chao, WANG Wen-Ke, SUN Yi-bo, LI Xiang-quan,HOU Xin-wei2015:  Processes of hydrogeochemical evolution of groundwater in the Guanzhong Basin, China, Journal of Groundwater Science and Engineering, 3, 136-146.
    [12] ZHANG Fa-wang, CHENG Yan-pei2015:  Progress on the mapping of groundwater resources and environment in Asia, Journal of Groundwater Science and Engineering, 3, 105-117.
    [13] DONG Hua, GE Li-qiang2015:  Groundwater ecological environment and the mapping of Asia, Journal of Groundwater Science and Engineering, 3, 118-126.
    [14] Ramasamy Jayakumar2015:  Groundwater level monitoring-importance global groundwater monitoring network, Journal of Groundwater Science and Engineering, 3, 295-305.
    [15] YI Qing, GE Li-qiang, CHENG Yan-pei, DONG Hua, LIU Kun, ZHANG Jian-kang, YUE Chen2015:  Compilation of Groundwater Quality Map and study of hydrogeochemical characteristics of groundwater in Asia, Journal of Groundwater Science and Engineering, 3, 176-185.
    [16] CHENG Yan-pei, DONG Hua2015:  Groundwater system division and compilation of Groundwater Resources Map of Asia, Journal of Groundwater Science and Engineering, 3, 127-135.
    [17] SUN Dong-sheng, ZHAO Wei-hua, LI A-wei, ZHANG An-bin2015:  Analysis on method for effective in-situ stress measurement in hot dry rock reservoir, Journal of Groundwater Science and Engineering, 3, 9-15.
    [18] B.T. Hiller, N. Jadamba2013:  Groundwater Use in the Selenge River Basin, Mongolia, Journal of Groundwater Science and Engineering, 1, 11-32.
    [19] Zong-jun Gao, Yong-gui Liu2013:  Groundwater Flow Driven by Heat, Journal of Groundwater Science and Engineering, 1, 22-27.
    [20] Aizhong Ding, Lirong Cheng, Steve Thornton, Wei Huang, David Lerner2013:  Groundwater quality Management in China, Journal of Groundwater Science and Engineering, 1, 54-59.
  • 加载中
图(5) / 表ll (5)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  15
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-16
  • 录用日期:  2025-05-23
  • 网络出版日期:  2025-07-20
  • 刊出日期:  2025-08-08

目录

    /

    返回文章
    返回