• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of groundwater level trend in Jakham River Basin of Southern Rajasthan

Vinay Kumar Gautam Mahesh Kothari P.K. Singh S.R. Bhakar K.K. Yadav

Gautam VK, Kothari M, Singh P.K., et al. 2022. Analysis of groundwater level trend in Jakham River Basin of Southern Rajasthan. Journal of Groundwater Science and Engineering, 10(1): 1-9 doi:  10.19637/j.cnki.2305-7068.2022.01.001
Citation: Gautam VK, Kothari M, Singh P.K., et al. 2022. Analysis of groundwater level trend in Jakham River Basin of Southern Rajasthan. Journal of Groundwater Science and Engineering, 10(1): 1-9 doi:  10.19637/j.cnki.2305-7068.2022.01.001

doi: 10.19637/j.cnki.2305-7068.2022.01.001

Analysis of groundwater level trend in Jakham River Basin of Southern Rajasthan

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Location map of study area

    Figure  2.  Identified wells for groundwater level monitoring

    Figure  4.  Trend of groundwater level during pre- and post-monsoon

    Figure  3.  Graphical representation of groundwater level in relation with annual rainfall

    Figure  5.  Mean groundwater level fluctuation (2009-2019) for pre- and post-monsoon periods

    Figure  6.  Groundwater recharge indicator, Sen’s slope map for pre and post monsoon season

    Table  1.   Results of Mann-Kendal test statistics for pre- and post monsoon season (2009-2020)

    Well No.LatitudeLongitudePre-monsoonPost-monsoon
    Kendal tau p-value Slope Trend Kendal tau p-value Slope Trend
    1 74.716 24.057 0.564 0.020 0.314 Increasing 0.019 0.150 0.080 No
    2 74.791 24.212 −0.073 0.815 −0.037 No 0.787 0.001 0.603 Increasing
    3 74.645 24.210 0.477 0.050 0.394 Increasing −0.087 0.050 −0.320 Decreasing
    4 74.557 24.383 −0.241 0.347 −0.350 No 0.537 0.028 0.657 Increasing
    5 74.721 24.391 0.225 0.333 0.493 No −0.507 0.028 −0.457 Decreasing
    6 74.622 24.444 −0.261 0.350 −0.227 No 0.294 0.241 0.530 No
    7 74.642 24.398 −0.500 0.400 −0.483 No 0.290 0.180 0.350 No
    8 74.738 24.302 −0.450 0.035 −0.253 Decreasing 0.241 0.347 0.100 No
    9 74.652 24.325 0.611 0.012 0.625 Increasing 0.153 0.034 0.105 Increasing
    10 74.541 24.293 0.400 0.022 0.455 Increasing 0.000 1.000 0.000 No
    11 74.596 24.239 −0.077 0.251 −0.194 No 0.750 0.093 0.180 No
    12 74.713 24.240 −0.093 0.073 −0.754 No 0.436 0.060 0.331 No
    13 74.733 24.131 −0.047 0.213 −0.014 No −0.020 0.036 −0.354 Decreasing
    14 74.644 24.141 0.019 1.000 0.000 No 0.110 0.696 0.062 No
    15 74.603 24.089 0.600 0.013 0.763 Increasing 0.019 1.000 0.000 No
    16 74.635 24.052 0.477 0.051 0.394 Increasing 0.220 0.390 0.250 No
    17 74.687 24.027 −0.485 0.200 −0.353 No −0.093 0.754 −0.036 No
    18 74.651 24.002 −0.019 1.000 0.000 No 0.661 0.006 0.913 Increasing
    19 74.617 24.056 0.167 0.531 0.390 No 0.198 0.390 0.210 No
    20 74.765 24.061 −0.404 0.101 −0.384 No −0.019 1.000 0.000 No
    21 74.711 24.039 −0.073 0.815 −0.037 No 0.304 0.235 0.489 No
    22 74.691 24.065 −0.294 0.241 −0.285 No 0.367 0.138 0.300 No
    23 74.699 24.072 −0.073 0.815 −0.037 No −0.092 0.734 −0.139 No
    24 74.760 24.079 −0.352 0.159 −2.262 No −0.200 0.436 −0.400 No
    25 74.744 24.093 −0.073 0.315 −0.045 No −0.074 0.035 −0.283 Decreasing
    26 74.750 24.103 −0.204 0.433 −0.793 No −0.611 0.012 −0.621 Decreasing
    27 74.696 24.095 −0.073 0.815 −0.037 No −0.035 0.018 −0.210 Decreasing
    28 74.758 24.157 −0.278 0.273 −0.464 No 0.374 0.135 0.383 No
    29 74.726 24.154 −0.035 0.815 −0.037 No 0.035 0.018 0.210 Increasing
    30 74.667 24.101 −0.278 0.273 −0.870 No 0.661 0.006 0.599 Increasing
    31 74.613 24.089 −0.073 0.435 −0.327 No 0.350 0.319 0.452 No
    32 74.668 24.154 0.167 0.531 0.390 No 0.382 0.119 0.800 No
    33 74.649 24.123 −0.073 0.815 −0.037 No 0.210 0.390 0.207 No
    34 74.659 24.207 0.575 0.019 0.900 Increasing 0.491 0.043 0.200 Decreasing
    35 74.643 24.201 −0.015 0.210 −0.150 No 0.374 0.135 0.383 No
    36 74.661 24.250 −0.426 0.085 −0.565 No 0.440 0.072 0.550 No
    37 74.631 24.248 −0.294 0.241 −0.484 No 0.350 0.105 0.303 No
    38 74.687 24.262 −0.352 0.159 −0.490 No 0.220 0.390 0.257 No
    39 74.758 24.200 0.167 0.531 0.390 No 0.641 0.009 0.605 Increasing
    40 74.722 24.176 −0.167 0.231 −0.050 No 0.055 0.876 0.023 No
    41 74.708 24.197 0.025 1.000 0.000 No 0.481 0.033 0.195 Increasing
    42 74.705 24.213 −0.315 0.210 −0.150 No −0.093 0.754 −0.036 No
    43 74.699 24.229 −0.400 0.085 −0.505 No −0.091 0.040 −0.201 Decreasing
    44 74.721 24.261 −0.278 0.273 −0.293 No −0.514 0.035 −0.637 Decreasing
    45 74.780 24.180 0.165 0.525 0.300 No −0.553 0.015 −0.557 Decreasing
    46 74.763 24.281 −0.224 0.387 −0.217 No 0.073 0.815 0.033 No
    47 74.762 24.316 −0.294 0.241 −0.484 No 0.050 0.105 0.065 No
    48 74.748 24.331 0.056 0.876 0.014 No 0.000 1.000 0.000 No
    49 74.769 24.348 0.256 0.376 0.210 No 0.000 1.000 0.000 No
    50 74.679 24.296 −0.093 0.050 −0.080 Decreasing −0.037 0.938 0.002 No
    51 74.622 24.290 0.017 0.376 0.250 No 0.032 0.088 0.335 No
    52 74.611 24.277 0.056 0.879 0.015 No 0.404 0.101 0.450 No
    53 74.664 24.325 0.056 0.376 0.250 No 0.031 0.098 0.305 No
    54 74.676 24.336 0.167 0.528 0.250 No 0.110 0.696 100.000 No
    55 74.593 24.297 0.056 0.376 0.250 No 0.035 0.058 0.210 Decreasing
    56 74.579 24.325 0.130 0.038 0.080 Increasing 0.404 0.101 0.671 No
    57 74.556 24.341 0.035 0.835 0.000 No 0.031 0.098 0.305 No
    58 74.539 24.319 0.426 0.085 0.242 No 0.019 1.000 0.000 No
    59 74.534 24.338 0.062 0.231 0.090 No 0.110 0.696 0.250 No
    60 74.575 24.384 0.241 0.347 0.150 No 0.147 0.585 0.300 No
    61 74.517 24.375 0.019 1.000 0.000 No 0.205 0.325 0.185 No
    62 74.574 24.396 0.241 0.347 0.210 No 0.000 1.000 0.000 No
    63 74.690 24.367 −0.094 0.341 −0.084 No 0.350 0.250 0.152 No
    64 74.644 24.387 −0.367 0.138 −0.387 No 0.455 0.062 0.883 No
    65 74.645 24.387 0.056 0.015 0.230 Increasing −0.205 0.019 −0.250 Decreasing
    66 74.687 24.403 −0.330 0.184 −0.655 No 0.404 0.101 0.391 No
    67 74.656 24.427 0.056 0.256 0.214 No 0.031 0.098 0.305 No
    68 74.608 24.410 0.019 1.000 0.000 No 0.440 0.072 0.320 No
    69 74.762 24.387 0.030 0.046 0.314 Increasing 0.600 0.013 0.550 Increasing
    70 74.734 24.360 −0.120 0.689 −0.035 No 0.095 0.765 0.045 No
    71 74.716 24.385 0.056 0.876 0.014 No −0.091 0.040 −0.225 Decreasing
    72 74.702 24.386 −0.241 0.347 −0.252 No 0.521 0.030 0.609 Increasing
    73 74.758 24.393 0.150 0.252 0.050 No −0.553 0.020 −0.557 Decreasing
    74 74.758 24.391 −0.294 0.241 −0.484 No 0.076 0.820 0.044 No
    75 74.750 24.403 −0.110 0.696 −0.036 No −0.050 0.105 −0.065 No
    *(Here, α= 0.05 and confidence level=95%)
    下载: 导出CSV
  • Akther H, Ahmed MS, Rasheed KBS. 2009. Spatial and temporal analysis of groundwater level fluctuation in Dhaka City, Bangladesh. Asian Journal of Earth Sciences, 3(4): 222-230. doi:  10.3923/ajes.2010.222.230
    CGWB. 2012. Groundwater year book-India. Central Ground Water Board Ministry of Water Resources Government of India, Faridabad: 1-63.
    CGWB. 2013. Ground water resource estimation methodology. Report of the Ground Water Resource Estimation Committee, Central Ground Water Board (CGWB), Ministry of Water Resources, Government of India, New Delhi, India: 1-75.
    Charizopoulos N, Zagana E, Psilovikos A. 2018. Assessment of natural and anthropogenic impacts in groundwater, utilizing multivariate statistical analysis and inverse distance weighted interpolation modeling: The case of a Scopia basin (Central Greece). Environmental Earth Sciences, 77: 1-18. doi:  10.1007/s12665-017-7169-5
    Duong Du Bui, Akira Kawamura, Thanh Ngoc Tong, Hideo Amaguchi, Naoko Nakagawa. 2012. Spatio-temporal analysis of recent groundwater-level trends in the Red River Delta, Vietnam. Hydrogeology Journal, 20: 1635-1650. doi:  10.1007/s10040-012-0889-4
    Gautam VK, Awasthi MK. 2020. Evaluation of water resources demand and supply for the districts of central Narmada valley zone. International Journal of Current Microbiology and Applied Sciences, 9(2): 3043-3050. doi:  10.20546/ijcmas.2020.902.350
    Gautam VK, Awasthi MK, Trivedi A. 2020. Optimum allocation of water and land resource for maximizing farm income of Jabalpur District, Madhya Pradesh. International Journal of Environment and Climate Change, 10(12): 224-233. doi:  10.9734/IJECC/2020/v10i1230299
    Gautam VK, Kothari M, Singh PK, et al. 2021. Determination of geomorphological characteristics of Jakham River Basin using GIS technique. Indian Journal of Ecology, 48(6): 1627-1634.
    Gautam VK, Kothari, M, Singh PK, et al. 2022. Decadal groundwater level changes in Pratapgarh District of Southern Rajasthan, India. Ecology Environment & Conservation, 28(1): 283-289.
    Halder S, Roy MB, Roy PK. 2020. Analysis of groundwater level trend and groundwater drought using Standard Groundwater Level Index: A case study of an eastern river basin of West Bengal, India. SN applied science: 507-531.
    Helsel DR, Hirsch RM. 2002. Statistical methods in water resources. In: Techniques of Water Resources Investigations, Book 4, Chap. 3. US Geological Survey, Reston, VA.
    Kendall, MG. 1975. Rank correlation methods. London: Griffin.
    Ketata M, Gueddari M, Bouhlila, R. 2012. Use of geographical information system and water quality index to assess groundwater quality in El khairat deep aquifer (enfidha, central east tunisia). Arabian Journal Geosciences, 5: 1379-1390. doi:  10.1007/s12517-011-0292-9
    Kumar P, SK Chandniha, Lohani AK, et al. 2018. Trend analysis of groundwater level using non-parametric tests in alluvial aquifers of Uttar Pradesh, India. Current world environment, 13(1): 44-54. doi:  10.12944/CWE.13.1.05
    Mann HB. 1945. Nonparametric tests against trend. Econometrica, 13(3): 245-259. doi:  10.2307/1907187
    Maréchal JC, Dewandel B, Ahmed S, et al. 2006. Combining the groundwater budget and water table fluctuation methods to estimate specific yield and natural recharge. Journal of Hydrology, 329(1-2): 281-293. doi:  10.1016/j.jhydrol.2006.02.022
    Nema S, Awasthi MK, Nema RK. 2016. Trend analysis of annual and seasonal rainfall in Tawa command area. International Journal of Environment, Agriculture and Biotechnology, (4): 952-957.
    Panda DK, Mishra A, Kumar A. 2012. Trend quantification in groundwater levels of Gujarat in western India. Hydrological Sciences Journal, 57(7): 1325-1336. doi:  10.1080/02626667.2012.705845
    Pathak AA, Dodamani BM. 2018. Trend analysis of groundwater levels and assessment of regional groundwater drought: Ghataprabha River Basin, India. Natural Resources Research.
    Patle GT, Singh, DK, Sarangi, A, et al. 2015. Time series analysis of groundwater levels and projection of future trend. Journal Geological Society of India, 85: 232-242. doi:  10.1007/s12594-015-0209-4
    Pavelic P, Patankar U, Acharya S, et al. 2012. Role of groundwater in buffering irrigation production against climate variability at the basin scale in South-West India. Agriculture Water Manage, 103: 78-87. doi:  10.1016/j.agwat.2011.10.019
    Selvam S, Venkatramanan S, Chung SY, et al. 2016. Identification of groundwater contamination sources in Dindugal district of Tamil Nadu, India using GIS and multivariate statistical analyses. Arabian Journal of Geosciences, 9(5): 407. doi:  10.1007/s12517-016-2417-7
    Sen PK. 1968. Estimates of regression coefficient based on Kendall’s tau. Journal of the American Statistical Assocication, 63: 1379-1389. doi:  10.1080/01621459.1968.10480934
    Thakur GS, Thomas T. 2011. Analysis of groundwater levels for detection of trend in Sagar district, Madhya Pradesh. Journal of the Geological Society of India, 77: 303-308. doi:  10.1007/s12594-011-0038-z
  • [1] Xiu-bo Sun, Chang-lai Guo, Jing Zhang, Jia-quan Sun, Jian Cui, Mao-hua Liu2023:  Spatial-temporal difference between nitrate in groundwater and nitrogen in soil based on geostatistical analysis, Journal of Groundwater Science and Engineering, 11, 37-46. doi: 10.26599/JGSE.2023.9280004
    [2] Chen She-ming, Liu Hong-wei, Liu Fu-tian, Miao Jin-jie, Guo Xu, Zhang Zhou, Jiang Wan-jun2022:  Using time series analysis to assess tidal effect on coastal groundwater level in Southern Laizhou Bay, China, Journal of Groundwater Science and Engineering, 10, 292-301. doi: 10.19637/j.cnki.2305-7068.2022.03.007
    [3] Nasiri Shima, Ansari Hossein, Ziaei Ali Naghi2022:  Determination of water balance equation components in irrigated agricultural watersheds using SWAT and MODFLOW models : A case study of Samalqan plain in Iran, Journal of Groundwater Science and Engineering, 10, 44-56. doi: 10.19637/j.cnki.2305-7068.2022.01.005
    [4] Abebe Wondmagegn Taye2022:  Evaluation of groundwater resource potential by using water balance model: A case of Upper Gilgel Gibe Watershed, Ethiopia, Journal of Groundwater Science and Engineering, 10, 209-222. doi: 10.19637/j.cnki.2305-7068.2022.03.001
    [5] Guo Jin-xing, Li Zhi-ping, Stefan Catalin2022:  Managed aquifer recharge (MAR) applications in China–achievements and challenges, Journal of Groundwater Science and Engineering, 10, 57-69. doi: 10.19637/j.cnki.2305-7068.2022.01.006
    [6] Shahbaz Akhtar M, Nakashima Yoshitaka, Nishigaki Makoto2021:  Clogging mechanisms and preventive measures in artificial recharge systems, Journal of Groundwater Science and Engineering, 9, 181-201. doi: 10.19637/j.cnki.2305-7068.2021.03.002
    [7] ZHOU Hao, WU Yong, HUANG Feng, TANG Xue-fang2021:  Experimental simulation and dynamic model analysis of Cadmium (Cd) release in soil affected by rainfall leaching in a coal-mining area, Journal of Groundwater Science and Engineering, 9, 65-72. doi: 10.19637/j.cnki.2305-7068.2021.01.006
    [8] KHELFAOUI Hakim, DAJBRI Larbi, LAKHAL Fatima Zohra, CHAFFAI Hicham, HANI Azzedine, SAYAD Lamine2020:  Determination of the origin of mineralization and groundwater salinity in the Adrar region in the southwest of Algeria, Journal of Groundwater Science and Engineering, 8, 158-171. doi: 10.19637/j.cnki.2305-7068.2020.02.007
    [9] Bahrami Mehdi, Khaksar Elmira, Khaksar Elahe2020:  Spatial variation assessment of groundwater quality using multivariate statistical analysis(Case Study: Fasa Plain, Iran), Journal of Groundwater Science and Engineering, 8, 230-243. doi: 10.19637/j.cnki.2305-7068.2020.03.004
    [10] Negar Fathi, Mohammad Bagher Rahnama, Mohammad Zounemat Kermani2020:  Spatial analysis of groundwater quality for drinking purpose in Sirjan Plain, Iran by fuzzy logic in GIS, Journal of Groundwater Science and Engineering, 8, 67-78. doi: 10.19637/j.cnki.2305-7068.2020.01.007
    [11] SAMI Guellouh, ABDELWAHHAB Filali, Med ISSAM Kalla2020:  Estimation of the peak flows in the catchment area of Batna (Algeria), Journal of Groundwater Science and Engineering, 8, 79-86. doi: 10.19637/j.cnki.2305-7068.2020.01.008
    [12] Yacob T Tesfaldet, Avirut Puttiwongrak, Tanwa Arpornthip2020:  Spatial and temporal variation of groundwater recharge in shallow aquifer in the Thepkasattri of Phuket, Thailand, Journal of Groundwater Science and Engineering, 8, 10-19. doi: 10.19637/j.cnki.2305-7068.2020.01.002
    [13] LI Yang, KANG Feng-Xin, ZOU An-de2019:  Isotope analysis of nitrate pollution sources in groundwater of Dong’e geohydrological unit, Journal of Groundwater Science and Engineering, 7, 145-154. doi: 10.19637/j.cnki.2305-7068.2019.02.005
    [14] LIU Yu, CHENG Yan-pei, GE Li-qiang2018:  Analysis on exploitation status, potential and strategy of groundwater resources in the five countries of Central Asia, Journal of Groundwater Science and Engineering, 6, 49-57. doi: 10.19637/j.cnki.2305-7068.2018.01.006
    [15] Chamroeun SOK, Sokuntheara CHOUP2017:  Climate change and groundwater resources in Cambodia, Journal of Groundwater Science and Engineering, 5, 31-43.
    [16] JIANG Ti-sheng, QU Ci-xiao, WANG Ming-yu, SUN Yan-wei, HU Bo, CHU Jun-yao2017:  Analysis on temporal and spatial variations of groundwater hydrochemical characteristics in the past decade in southern plain of Beijing, China, Journal of Groundwater Science and Engineering, 5, 235-248.
    [17] WU Jian-qiang, WU Xia-yi2016:  Geological environment impact analysis of a landfill by the Yangtze River, Journal of Groundwater Science and Engineering, 4, 96-102.
    [18] LIU Chun-yan, SUN Ji-chao, JING Ji-hong, ZHANG Ying, GUO Wei-xuan2016:  Distribution characteristics and source of BTEX in groundwater in Guangzhou, Guangdong Province, P. R. China, Journal of Groundwater Science and Engineering, 4, 238-246.
    [19] Jiansheng Shi, Hongtao Liu, Zhiyuan Liu, Tieliu Chen2013:  Application of the “Accurate Control Groundwater Resources” Theory in Containment of Groundwater Resource Exhaustion Trend, Journal of Groundwater Science and Engineering, 1, 1-10.
    [20] Yan Zhang, Shuai Song, Jing Li, Fadong Li, Guangshuai Zhao, Qiang Liu2013:  Stable Isotope Composition of Rainfall, Surface Water and Groundwater along the Yellow River, Journal of Groundwater Science and Engineering, 1, 82-88.
  • 加载中
图(6) / 表ll (1)
计量
  • 文章访问数:  1153
  • HTML全文浏览量:  537
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-07
  • 录用日期:  2021-12-12
  • 刊出日期:  2022-03-15

目录

    /

    返回文章
    返回