• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AI and ML in groundwater exploration and water resources management: Concepts, methods, applications, and future directions

Adla Andalu M Gopal Naik Sandeep Budde

Andalu A, Naik M G, Budde S. 2026. AI and ML in groundwater exploration and water resources management: Concepts, methods, applications, and future directions. Journal of Groundwater Science and Engineering, 14(1): 100-122 doi:  10.26599/JGSE.2026.9280070
Citation: Andalu A, Naik M G, Budde S. 2026. AI and ML in groundwater exploration and water resources management: Concepts, methods, applications, and future directions. Journal of Groundwater Science and Engineering, 14(1): 100-122 doi:  10.26599/JGSE.2026.9280070

doi: 10.26599/JGSE.2026.9280070

AI and ML in groundwater exploration and water resources management: Concepts, methods, applications, and future directions

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Key research areas in the application of AI in Hydrology (Biazar et al. 2025)

    Figure  2.  Application of various AI methods for groundwater level prediction from 2001 to 2023 (Pourmorad et al. 2024). Note: ANN – Artificial Neural Network, ANFIS - Adaptive Neuro-Fuzzy Inference Systems, SVM – Support vector Machines, DL- Deep Learning, GP- Genetic Programming

  • Abdelaziz S, Gad MI, El Tahan AHMH. 2020. Groundwater quality index based on PCA: Wadi el-natrun, Egypt. Journal of African Earth Sciences, 172: 103964. DOI:  10.1016/j.jafrearsci.2020.103964.
    Abdullah MS, Karim HH, Samueel ZW. 2022. Investigation structural settlement by ground penetrating radar (case study). IOP Conference Series: Earth and Environmental Science, 961(1): 012037. DOI:  10.1088/1755-1315/961/1/012037.
    Abu M, Musah R, Zango MS. 2024. A combination of multivariate statistics and machine learning techniques in groundwater characterization and quality forecasting. Geosystems and Geoenvironment, 3(2): 100261. DOI:  10.1016/j.geogeo.2024.100261.
    Agweyu A, Hill K, Diaz T, et al. 2023. Regular measurement is essential but insufficient to improve quality of healthcare. BMJ, 380: e073412. DOI:  10.1136/bmj-2022-073412.
    Agyeman BT, Naouri M, Appels WM, et al. 2023. Integrating machine learning paradigms and mixed-integer model predictive control for irrigation scheduling. Cornell University. DOI: 10.48550/arxiv.2306.08715
    Agyemang VO. 2022. Application of geostatistical techniques in the assessment of groundwater contamination in the Afigya Kwabre District of Ghana. Applied Water Science, 12(3): 53. DOI:  10.1007/s13201-022-01582-x.
    Ahmed MI, Spooner B, Isherwood J, et al. 2023. A systematic review of the barriers to the implementation of artificial intelligence in healthcare. Cureus, 15(10): e46454. DOI:  10.7759/cureus.46454.
    Aldoseri A, Al-Khalifa KN, Hamouda AM. 2023. Re-thinking data strategy and integration for artificial intelligence: Concepts, opportunities, and challenges. Applied Sciences, 13(12): 7082. DOI:  10.3390/app13127082.
    Alghamdi AG, Aly AA, Majrashi MA, et al. 2023. Impact of climate change on hydrochemical properties and quality of groundwater for domestic and irrigation purposes in arid environment: A case study of Al-Baha region, Saudi Arabia. Environmental Earth Sciences, 82(1): 39. DOI:  10.1007/s12665-022-10731-z.
    Alshehri F, Rahman A. 2023. Coupling machine and deep learning with explainable artificial intelligence for improving prediction of groundwater quality and decision-making in arid region, Saudi Arabia. Water, 15(12): 2298. DOI:  10.3390/w15122298.
    Apostolou K, Staikou A, Sotiraki S, et al. 2021. An assessment of snail-farm systems based on land use and farm components. Animals, 11(2): 272. DOI:  10.3390/ani11020272.
    Appling AP, Oliver SK, Read JS, et al. 2022. Machine learning for understanding inland water quantity, quality, and ecology. Encyclopedia of Inland Waters. Amsterdam: Elsevier: 585−606. DOI:  10.1016/b978-0-12-819166-8.00121-3.
    Biazar SM, Golmohammadi G, Nedhunuri RR, et al. 2025. Artificial intelligence in hydrology: Advancements in soil, water resource management, and sustainable development. Sustainability, 17(5): 2250. DOI:  10.3390/su17052250.
    Bata M, Carriveau R, Ting DSK. 2020. Short-term water demand forecasting using hybrid supervised and unsupervised machine learning model. Smart Water, 5(1): 2. DOI:  10.1186/s40713-020-00020-y.
    Behar JA, Levy J, Celi LA. 2023. Generalization in medical AI: a perspective on developing scalable models. Cornell University. DOI: 10.48550/arXiv.2311.
    Bradshaw TJ, Huemann Z, Hu JJ, et al. 2023. A guide to cross-validation for artificial intelligence in medical imaging. Radiology: Artificial Intelligence, 5(4): e220232. DOI:  10.1148/ryai.220232.
    Bui DD, Nguyen NC, Bui NT, et al. 2017. Climate change and groundwater resources in Mekong Delta, Vietnam. Journal of Groundwater Science and Engineering, 5(1): 76−90. DOI:  10.26599/jgse.2017.9280008.
    Chakraborty M, Tejankar A, Ayyamperumal R. 2021. Site suitability analysis for artificial groundwater recharge potential zone using a GIS approach in Basaltic terrain, Buldhana District, Maharashtra, India. Research Square (United States). DOI:  10.21203/rs.3.rs-405615/v1.
    Chakraborty S. 2024. Towards a comprehensive assessment of AI's environmental impact. Cornell University. DOI:  10.48550/arxiv.2405.14004.
    Chang FJ, Guo SL. 2020. Advances in hydrologic forecasts and water resources management. Water, 12(6): 1819. DOI:  10.3390/w12061819.
    Chatterjee SS, Ghosh R, Renganathan A, et al. 2023. Uncertainty quantification in inverse models in hydrology. Cornell University. Doi: 10.48550/arxiv.2310.02193
    Cheng H, Hong W, Zhang ZK, et al. 2025. Impacts of random negative training datasets on machine learning-based geologic hazard susceptibility assessment. China Geology, 8(4): 676−690. DOI:  10.31035/cg2024094.
    Cheng CY, Zhang F, Shi JC, et al. 2022. What is the relationship between land use and surface water quality? A review and prospects from remote sensing perspective. Environmental Science and Pollution Research, 29(38): 56887−56907. DOI:  10.1007/s11356-022-21348-x.
    Choudhary P, Modi A, Botre BA, et al. 2021. Leak detection in smart water distribution network. American Institute of Physics. DOI:  10.1063/5.0044005.
    Chrysos G, Georgopoulos M, Deng J, et al. 2021. Augmenting deep classifiers with polynomial neural networks. Cornell University. DOI:  10.48550/arxiv.2104.07916
    Clark SR, Pagendam D, Ryan L. 2022. Forecasting multiple groundwater time series with local and global deep learning networks. International Journal of Environmental Research and Public Health, 19(9): 5091. DOI:  10.3390/ijerph19095091.
    Dabas J, Sarah S, Mondal NC, et al. 2022. Geostatistical spatial projection of geophysical parameters for practical aquifer mapping. Scientific Reports, 12: 4641. DOI:  10.1038/s41598-022-08494-5.
    Dahan O. 2020. Vadose zone monitoring as a key to groundwater protection. Frontiers in Water, 2: 599569. DOI:  10.3389/frwa.2020.599569.
    Daniel I, Cominola A. 2023. Estimating irregular water demands with physics-informed machine learning to inform leakage detection. Cornell University. DOI:  10.48550/arxiv.2309.02935.
    Dao PU, Heuzard AG, Le TXH, et al. 2024. The impacts of climate change on groundwater quality: A review. Science of The Total Environment, 912: 169241. DOI:  10.1016/j.scitotenv.2023.169241.
    de Lara A, Mieno T, Luck JD, et al. 2023. Predicting site-specific economic optimal nitrogen rate using machine learning methods and on-farm precision experimentation. Precision Agriculture, 24(5): 1792−1812. DOI:  10.1007/s11119-023-10018-8.
    Derdour A, Benkaddour Y, Bendahou B. 2022. Application of remote sensing and GIS to assess groundwater potential in the transboundary watershed of the Chott-El-Gharbi (Algerian–Moroccan border). Applied Water Science, 12(6): 136. DOI:  10.1007/s13201-022-01663-x.
    Ding JL, Yang ST, Shi Q, et al. 2020. Using apparent electrical conductivity as indicator for investigating potential spatial variation of soil salinity across seven oases along Tarim River in southern Xinjiang, China. Remote Sensing, 12(16): 2601. DOI:  10.3390/rs12162601.
    Ding X, Du W. 2023. Optimizing irrigation efficiency using deep reinforcement learning in the field. Cornell University. DOI:  10.48550/arxiv.2304.01435.
    Eftekhari M, Khashei-Siuki A. 2025. Evaluating machine learning methods for predicting groundwater fluctuations using GRACE satellite in arid and semi-arid regions. Journal of Groundwater Science and Engineering, 13(1): 5−21. DOI:  10.26599/jgse.2025.9280035.
    El-Aassar AH, Hagagg K, Hussien R, et al. 2023. Integration of groundwater vulnerability with contaminants transport modeling in unsaturated zone, case study El-Sharqia, Egypt. Environmental Monitoring and Assessment, 195(6): 722. DOI:  10.1007/s10661-023-11298-3.
    Fan J, Bai JW, Li ZY, et al. 2022. A GNN-RNN approach for harnessing geospatial and temporal information: Application to crop yield prediction. Proceedings of the AAAI Conference on Artificial Intelligence, 36(11): 11873−11881. DOI:  10.1609/aaai.v36i11.21444.
    Feng F, Chen Z, Ni J, et al. 2024. Machine learning to access and ensure safe drinking water supply: A systematic review. DOI:  10.26434/chemrxiv-2024-cc4jd.
    Goh H. 2021. Artificial intelligence in achieving sustainable development goals. Cornell University. DOI:  10.48550/arXiv.2107.
    Guo BL, Zhang SC, Liu K, et al. 2023. Prediction of groundwater level under the influence of groundwater exploitation using a data-driven method with the combination of time series analysis and long short-term memory: A case study of a coastal aquifer in Rizhao City, Northern China. Frontiers in Environmental Science, 11: 1253949. DOI:  10.3389/fenvs.2023.1253949.
    Guo Y, Xing NC, Gan FP, et al. 2023. Evaluating the hydrological components contributions to terrestrial water storage changes in Inner Mongolia with multiple datasets. Sensors, 23(14): 6452. DOI:  10.3390/s23146452.
    Han Y, Chen JH, Dou MT, et al. 2023. The impact of artificial intelligence on the financial services industry. Academic Journal of Management and Social Sciences, 2(3): 83−85. DOI:  10.54097/ajmss.v2i3.8741.
    He T, Chang H, Zhang D. 2022. Identification of physical processes and unknown parameters of 3D groundwater contaminant problems via theory-guided U-net. Cornell University. DOI: 10.48550/arxiv. 2205.00134.
    Hsia SC, Wang SH, Hsu SW. 2021. Smart water-meter wireless transmission system for smart cities. IEEE Consumer Electronics Magazine, 10(6): 83−88. DOI:  10.1109/MCE.2020.3043997.
    Huang YK, Wang XY, Xiang WJ, et al. 2022. Forward-looking roadmaps for long-term continuous water quality monitoring: Bottlenecks, innovations, and prospects in a critical review. Environmental Science & Technology, 56(9): 5334−5354. DOI:  10.1021/acs.est.1c07857.
    Huynh BQ, Kiang MV. 2023. AI for anticipatory action: Moving beyond climate forecasting. Cornell University. DOI: 10.48550/arxiv.2307.15727
    Jaafarzadeh MS, Tahmasebipour N, Haghizadeh A, et al. 2021. Groundwater recharge potential zonation using an ensemble of machine learning and bivariate statistical models. Scientific Reports, 11: 5587. DOI:  10.1038/s41598-021-85205-6.
    Kamyab H, Khademi T, Chelliapan S, et al. 2023. The latest innovative avenues for the utilization of artificial Intelligence and big data analytics in water resource management. Results in Engineering, 20: 101566. DOI:  10.1016/j.rineng.2023.101566.
    Kobayashi K, Alam SB. 2023. Explainable, interpretable & trustworthy AI for intelligent digital twin: Case study on remaining useful life. Cornell University. DOI:  10.48550/arxiv.2301.06676.
    Kumar K, Saini R. 2021. Application of artificial intelligence for the optimization of hydropower energy generation. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 8(28): 170560. DOI:  10.4108/eai.6-8-2021.170560.
    Li J, Wang WK, Cheng DW, et al. 2021. Hydrogeological structure modelling based on an integrated approach using multi-source data. Journal of Hydrology, 600: 126435. DOI:  10.1016/j.jhydrol.2021.126435.
    Li P, Yang J, Islam MA, et al. 2023. Making AI less "Thirsty": Uncovering and addressing the secret water footprint of AI models. Cornell University. DOI:  10.48550/arXiv.2304.
    Li WB, Wang XY, He L, et al. 2026. Reservoir fluid type identification method based on deep learning: A case study of the Chang 1 Formation in the Jiyuan oilfield of the Ordos basin, China. China Geology. DOI:  10.31035/cg2025010.
    Liu X, Zhang JQ, Huang XL, et al. 2022. Heavy metal distribution and bioaccumulation combined with ecological and human health risk evaluation in a typical urban plateau lake, Southwest China. Frontiers in Environmental Science, 10: 814678. DOI:  10.3389/fenvs.2022.814678.
    Liu YD, Yan DD, Zheng KX. 2022. Design of a comprehensive assessment model for the stability and engineering geology of slope based on improved convolutional neural network. Computational Intelligence and Neuroscience, 2022: 1639311. DOI:  10.1155/2022/1639311.
    Mahamat AA, Boukar MM, Ibrahim NM, et al. 2021. Machine learning approaches for prediction of the compressive strength of alkali activated termite mound soil. Applied Sciences, 11(11): 4754. DOI:  10.3390/app11114754.
    Malakar P, Sarkar S, Mukherjee A, et al. 2021. Use of machine learning and deep learning methods in groundwater. Elsevier BV, 545-557. DOI:  10.1016/b978-0-12-818172-0.00040-2.
    McGraw D, Mandl KD. 2021. Privacy protections to encourage use of health-relevant digital data in a learning health system. NPJ Digital Medicine, 4: 2. DOI:  10.1038/s41746-020-00362-8.
    Mohammadi B. 2021. A review on the applications of machine learning for runoff modeling. Sustainable Water Resources Management, 7(6): 98. DOI:  10.1007/s40899-021-00584-y.
    Mohammed SJ, Zubaidi SL, Ortega-Martorell S, et al. 2022. Application of hybrid machine learning models and data pre-processing to predict water level of watersheds: Recent trends and future perspective. Cogent Engineering, 9(1). DOI:  10.1080/23311916.2022.2143051.
    Mohammad AT, Jalut QH, Abbas NL. 2020. Predicting groundwater level of wells in the Diyala river Basin in eastern Iraq using artiicial neural network. Journal of Groundwater Science and Engineering, 8(1): 87−96. DOI:  10.19637/j.cnki.2305-7068.2020.01.009.
    Mokua N, Maina CW, Kiragu H. 2021. A raw water quality monitoring system using wireless sensor networks. International Journal of Computer Applications, 174(21): 35−42. DOI:  10.5120/ijca2021921113.
    Mustafa HM, Mustapha A, Hayder G, et al. 2021. Applications of IoT and artificial intelligence in water quality monitoring and prediction: A review. 2021 6th International Conference on Inventive Computation Technologies (ICICT). January 20-22, 2021, Coimbatore, India. IEEE: 968−975. DOI:  10.1109/ICICT50816.2021.9358675.
    Nalevanková P, Fleischer P, Mukarram M, et al. 2023. Comparative assessment of sap flow modeling techniques in European beech trees: Can linear models compete with random forest, extreme gradient boosting, and neural networks? Water, 15(14): 2525. DOI:  10.3390/w15142525.
    Nguyen AD, Le Nguyen P, Vu VH, et al. 2022. Accurate discharge and water level forecasting using ensemble learning with genetic algorithm and singular spectrum analysis-based denoising. Scientific Reports, 12: 19870. DOI:  10.1038/s41598-022-22057-8.
    Pandey NK, Shukla AK, Shukla S, et al. 2014. Assessment of underground water potential zones using modern geomatics technologies in Jhansi district, Uttar Pradesh, India. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL−8: 377−381. DOI:  10.5194/isprsarchives-xl-8-377-2014.
    Pandey S, Tripathi S, Singh A. 2020. Delineation of ground water potential zone using remote sensing, GIS and GPS, in mauranipur block, Jhansi district (UP), India. International Journal of Current Microbiology and Applied Sciences, 9(6): 2138−2145. DOI:  10.20546/ijcmas.2020.906.261.
    Pourmorad S, Kabolizade M, Dimuccio LA. 2024. Artificial intelligence advancements for accurate groundwater level modelling: An updated synthesis and review. Applied Sciences, 14(16): 7358. DOI:  10.3390/app14167358.
    Prasad P, Loveson VJ, Kotha M, et al. 2020. Application of machine learning techniques in groundwater potential mapping along the west coast of India. GIScience & Remote Sensing, 57(6): 735−752. DOI:  10.1080/15481603.2020.1794104.
    Quan HB, Wang X. 2020. Research on application of GIS technology in water environment planning of basin. Journal of Physics: Conference Series, 1649(1): 012006. DOI:  10.1088/1742-6596/1649/1/012006.
    Rathor S, Kumari S. 2021. A social application of artificial intelligence & IoT for water conservation. IOP Conference Series: Materials Science and Engineering, 1116(1): 012191. DOI:  10.1088/1757-899x/1116/1/012191.
    Ryan P, Porter Z, Al-Qaddoumi J, et al. 2024. What's my role? modelling responsibility for AI-based safety-critical systems. Cornell University. DOI:  10.48550/arxiv.2401.09459.
    Sahour S, Khanbeyki M, Gholami V, et al. 2023. Evaluation of machine learning algorithms for groundwater quality modeling. Environmental Science and Pollution Research, 30(16): 46004−46021. DOI:  10.1007/s11356-023-25596-3.
    Sarker IH. 2021. Machine learning: Algorithms, real-world applications and research directions. SN Computer Science, 2(3): 160. DOI:  10.1007/s42979-021-00592-x.
    Siva Barathi A, Manapragada NVSK, Rai PK, et al. 2024. Artificial intelligence and machine learning-based building solutions: Pathways to ensure occupant comfort and energy efficiency with climate change. Big Data, Artificial Intelligence, and Data Analytics in Climate Change Research. Singapore: Springer Nature Singapore: 57−79. DOI:  10.1007/978-981-97-1685-2_4.
    Shi J, Yin Z, Myana R, et al. 2023. Deep learning models for flood predictions in South Florida. Cornell University. DOI:  10.48550/arxiv.2306.15907.
    Shrestha SG, Pradhanang SM. 2023. Performance of LSTM over SWAT in rainfall-runoff modeling in a small, forested watershed: A case study of cork brook, RI. Water, 15(23): 4194. DOI:  10.3390/w15234194.
    Slavković A, Seeman J. 2023. Statistical data privacy: A song of privacy and utility. Annual Review of Statistics and Its Application, 10: 189−218. DOI:  10.1146/annurev-statistics-033121-112921.
    Song H, Jung J. 2023. Scalable surface water mapping up to fine-scale using geometric features of water from topographic airborne LiDAR data. Cornell University. DOI:  10.48550/arxiv.2301.06567.
    Sowmya GS, Sathisha HK. 2023. Detecting financial fraud in the digital age: The AI and ML revolution. International Journal for Multidisciplinary Research, 5(5): 6139. DOI:  10.36948/ijfmr.2023.v05i05.6139.
    Sun N, Zhang S, Peng T, et al. 2022. Multi-variables-driven model based on random forest and Gaussian process regression for monthly streamflow forecasting. Water, 14(11): 1828. DOI:  10.3390/w14111828.
    Surinaidu L, Nandan MJ, Sahadevan DK, et al. 2021. Source identification and management of perennial contaminated groundwater seepage in the highly industrial watershed, south India. Environmental Pollution, 269: 116165. DOI:  10.1016/j.envpol.2020.116165.
    Suwadi NA, Derbali M, Sani NS, et al. 2022. An optimized approach for predicting water quality features based on machine learning. Wireless Communications and Mobile Computing, 2022: 3397972. DOI:  10.1155/2022/3397972.
    Swain S, Mishra SK, Pandey A, et al. 2022. Inclusion of groundwater and socio-economic factors for assessing comprehensive drought vulnerability over Narmada River Basin, India: A geospatial approach. Applied Water Science, 12(2): 14. DOI:  10.1007/s13201-021-01529-8.
    Toward a 21st Century National Data Infrastructure: Managing privacy and confidentiality risks with blended data. 2024. DOI:  10.17226/27335.
    Vahldiek K, Rüger B, Klawonn F. 2022. Leakages in district heating networks—Model-based data set quality assessment and localization. Sensors, 22(14): 5300. DOI:  10.3390/s22145300.
    Varouchakis EA, Solomatine D, Perez GAC, et al. 2023. Combination of geostatistics and self-organizing maps for the spatial analysis of groundwater level variations in complex hydrogeological systems. Stochastic Environmental Research and Risk Assessment, 37(8): 3009−3020. DOI:  10.1007/s00477-023-02436-x.
    Wang HL, Shen Y, Liang L, et al. 2022. River extraction from remote sensing images in cold and arid regions based on attention mechanism. Wireless Communications and Mobile Computing, 2022: 9410381. DOI:  10.1155/2022/9410381.
    Wang JB, Sun T, Wang XY. 2022. Research on the application of water resources optimal allocation model based on fuzzy optimization theory. Polish Journal of Environmental Studies, 31(6): 5241−5251. DOI:  10.15244/pjoes/150046.
    Wang YJ, Gu XC, Yang G, et al. 2021. Impacts of climate change and human activities on water resources in the Ebinur Lake Basin, Northwest China. Journal of Arid Land, 13(6): 581−598. DOI:  10.1007/s40333-021-0067-4.
    Wang X, Xiong W, Wang H, et al. 2018. Look before you leap: Bridging model-free and model-based reinforcement learning for planned-ahead vision-and-language navigation. Cornell University. DOI:  10.48550/arXiv.1803.
    Xin L, Mou TY. 2022. Research on the application of multimodal-based machine learning algorithms to water quality classification. Wireless Communications and Mobile Computing, 2022: 9555790. DOI:  10.1155/2022/9555790.
    Xu H, Lv B, Chen J, et al. 2023. Research on a prediction model of water quality parameters in a marine ranch based on LSTM-BP. Water, 15(15): 2760. DOI:  10.3390/w15152760.
    Xu Q, Shi Y, Bamber JL, et al. 2023. Physics-aware machine learning revolutionizes scientific paradigm for machine learning and process-based hydrology. Cornell University. DOI:  10.48550/arxiv.2310.05227.
    Yang L, Cheng YP, Wen X-R, et al. 2024. Development, hotspots and trend directions of groundwater numerical simulation: A bibliometric and visualization analysis. Journal of Groundwater Science and Engineering, 12(4): 411−427. DOI:  10.26599/JGSE.2024.9280031.
    Yu J, Yang R. 2021. Study on the predictive algorithm of plant restoration under heavy metals. Scientific Programming, 2021: 6193182. DOI:  10.1155/2021/6193182.
    Zhu W, Wang WG, Wang DY, et al. 2023. Application of the electromagnetic method to the spatial distribution of subsurface saline and fresh water in the coastal mudflat area of Jiangsu Province. Sensors, 23(14): 6405. DOI:  10.3390/s23146405.
    Zowghi D, Rimini FD. 2023. Diversity and inclusion in artificial intelligence. Cornell University. DOI:  10.48550/arXiv.2305.
  • [1] Marsa Bahiraie, Seiyed Mossa Hosseini, Bahareh Hossein-Panahi2025:  Groundwater resources exploitation management in response to water scarcity challenges in Khuzestan Province, Iran, Journal of Groundwater Science and Engineering, 13, 268-285. doi: 10.26599/JGSE.2025.9280054
    [2] Mobin Eftekhari, Abbas Khashei-Siuki2025:  Evaluating machine learning methods for predicting groundwater fluctuations using GRACE satellite in arid and semi-arid regions, Journal of Groundwater Science and Engineering, 13, 5-21. doi: 10.26599/JGSE.2025.9280035
    [3] Bhaktishree Nayak, Pallavi Nayak2025:  Optimal fault detection from seismic data using intelligent techniques: A comprehensive review of methods, Journal of Groundwater Science and Engineering, 13, 193-208. doi: 10.26599/JGSE.2025.9280049
    [4] Zai-yong Zhang, Da Xu, Cheng-cheng Gong, Bin Ran, Xue-ke Wang, Wan-yu Zhang, Jun-zuo Pan2025:  Finite analytic method for simulating water flow using water content-based Richards' equation, Journal of Groundwater Science and Engineering, 13, 147-155. doi: 10.26599/JGSE.2025.9280045
    [5] Jwan Sabah Mustafa, Dana Khider Mawlood2024:  Developing three-dimensional groundwater flow modeling for the Erbil Basin using Groundwater Modeling System (GMS), Journal of Groundwater Science and Engineering, 12, 178-189. doi: 10.26599/JGSE.2024.9280014
    [6] Stephen Pitchaimani V, Narayanan MSS, Abishek RS, Aswin SK, Jerin Joe RJ2024:  Delineation of groundwater potential zones using remote sensing and Geographic Information Systems (GIS) in Kadaladi region, Southern India, Journal of Groundwater Science and Engineering, 12, 147-160. doi: 10.26599/JGSE.2024.9280012
    [7] Parvaiz Ahmad Ganie, Ravindra Posti, Garima, Kishor Kunal, Nityanand Pandey, Pramod Kumar Pandey2024:  Morphometric analysis and hydrological implications of the Himalayan River Basin, Goriganga, India, using Remote Sensing and GIS techniques, Journal of Groundwater Science and Engineering, 12, 360-386. doi: 10.26599/JGSE.2024.9280028
    [8] Shamla Rasheed, Marykutty Abraham2024:  Conventional and futuristic approaches for the computation of groundwater recharge: A comprehensive review, Journal of Groundwater Science and Engineering, 12, 428-452. doi: 10.26599/JGSE.2024.9280027
    [9] Edmealem Temesgen, Demelash Wendmagegnehu Goshime, Destaw Akili2023:  Determination of groundwater potential distribution in Kulfo-Hare watershed through integration of GIS, remote sensing, and AHP in Southern Ethiopia, Journal of Groundwater Science and Engineering, 11, 249-262. doi: 10.26599/JGSE.2023.9280021
    [10] Muthamilselvan A, Preethi B2022:  Spatial confirmation of termite mounds as Bio-geo indicator for groundwater occurrences using ground magnetic survey: A case study from Perambalur Region of Tamil Nadu, India, Journal of Groundwater Science and Engineering, 10, 184-195. doi: 10.19637/j.cnki.2305-7068.2022.02.007
    [11] Dr Muthamilselvan A, Anamika Sekar, Emmanuel Ignatius2022:  Identification of groundwater potential in hard rock aquifer systems using Remote Sensing, GIS and Magnetic Survey in Veppanthattai, Perambalur, Tamilnadu, Journal of Groundwater Science and Engineering, 10, 367-380. doi: 10.19637/j.cnki.2305-7068.2022.04.005
    [12] Cherif Kessar, Yamina Benkesmia, Bilal Blissag, Lahsen Wahib Kébir2021:  Delineation of groundwater potential zones in Wadi Saida Watershed of NW-Algeria using remote sensing, geographic information system-based AHP techniques and geostatistical analysis, Journal of Groundwater Science and Engineering, 9, 45-64. doi: 10.19637/j.cnki.2305-7068.2021.01.005
    [13] Muthamilselvan A2021:  Identification of suitable sites for open and bore well using ground magnetic survey, Journal of Groundwater Science and Engineering, 9, 256-268. doi: 10.19637/j.cnki.2305-7068.2021.03.008
    [14] SADIKI Moulay Lhassan, EL MANSOURI Bouabid, BENSEDDIK Badr, CHAO Jamal, KILI Malika, EL MEZOUARY Lhoussaine2019:  Improvement of groundwater resources potential by artificial recharge technique: A case study of Charf El Akab aquifer in the Tangier region, Morocco, Journal of Groundwater Science and Engineering, 7, 224-236. doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.003
    [15] Nouayti Abderrahime, Khattach Driss, Hilali Mohamed, Nouayti Nordine2019:  Mapping potential areas for groundwater storage in the High Guir Basin (Morocco):Contribution of remote sensing and geographic information system, Journal of Groundwater Science and Engineering, 7, 309-322. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.002
    [16] A Muthamilselvan, N Rajasekaran, R Suresh2019:  Mapping of hard rock aquifer system and artificial recharge zonation through remote sensing and GIS approach in parts of Perambalur District of Tamil Nadu, India, Journal of Groundwater Science and Engineering, 7, 264-281. doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.007
    [17] LIU Ji-chao, SHI Jian-sheng, GAO Ye-xin, REN Zhan-bing2016:  Exploration on compound water circulation system to solve water resources problems of North China Plain, Journal of Groundwater Science and Engineering, 4, 229-237.
    [18] Jiankang Zhang, Yanpei Cheng, Hua Dong, Qingshi Guo, Kun Liu, Fawang Zhang2013:  Study on Ecological Environment and Sustainable Land Use Based on Satellite Remote Sensing, Journal of Groundwater Science and Engineering, 1, 89-96.
    [19] Aizhong Ding, Lirong Cheng, Steve Thornton, Wei Huang, David Lerner2013:  Groundwater quality Management in China, Journal of Groundwater Science and Engineering, 1, 54-59.
    [20] Cheng Yanpei, Ma Renhui2013:  Analysis of Water Resource Demands: Based on the Hydrological Unit, Journal of Groundwater Science and Engineering, 1, 48-59.
  • 加载中
图(2)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  5
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-22
  • 录用日期:  2025-07-28
  • 网络出版日期:  2025-10-22
  • 刊出日期:  2026-03-15

目录

    /

    返回文章
    返回