• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Vulnerability assessment in fractured aquifer using improved vulnerability index: Applied to Gabes aquifer, Southeastern Tunisia

Mounir Atoui Belgacem Agoubi

Atoui M, Agoubi B. 2026. Vulnerability assessment in fractured aquifer using improved vulnerability index: Applied to Gabes aquifer, Southeastern Tunisia. Journal of Groundwater Science and Engineering, 14(1): 69-82 doi:  10.26599/JGSE.2026.9280073
Citation: Atoui M, Agoubi B. 2026. Vulnerability assessment in fractured aquifer using improved vulnerability index: Applied to Gabes aquifer, Southeastern Tunisia. Journal of Groundwater Science and Engineering, 14(1): 69-82 doi:  10.26599/JGSE.2026.9280073

doi: 10.26599/JGSE.2026.9280073

Vulnerability assessment in fractured aquifer using improved vulnerability index: Applied to Gabes aquifer, Southeastern Tunisia

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Location and geological map of the study area (Based on Tunisia geological map 1/500,000)

    Figure  2.  Geological cross-section A-A' from the study area.

    Figure  3.  Flowchart of the improved GOD method and development of the FAI-GOD model

    Figure  4.  Lineament density illustration using ArcGIS functions (after Tam et al. 2004)

    Figure  5.  Parameters and results of the GOD vulnerability assessment in the study area: a) Groundwater occurrence (G), b) Overlying lithology (O), c) Depth to water table (D), (d) Final GOD vulnerability map.

    Figure  6.  Derived geospatial maps for the FAI analysis in the study area: (a) Digital Elevation Model (DEM) of the study area, (b) fracture network, (c) Lineament density map, and (d) resulting FAI index map.

    Figure  7.  Spatial distribution maps of the FAI-GOD index and associated vulnerability classes

    Figure  8.  Projection sampled point on the C1×C2 factorial plane according to the pollution vulnerability indices

    Notes: C1 and C2 represent the first and second principal components derived from the PCA analysis, which together explain the largest proportion of variance in the dataset

    Figure  9.  Hierarchical cluster analysis (HCA) of sampled points based on Euclidean distance derived from FAI-GOD vulnerability scores, revealing three distinct vulnerability groups in the study area

    Figure  10.  Comparison between GOD and FAI-GOD methods of aquifer vulnerability assessment in fractured aquifer. The shift toward higher vulnerability classes reflects the impact of fracture-controlled flow.

    Figure  11.  Polynomial regression of vulnerability assessment indicators AFI-GOD and GOD indices

    Table  1.   GOD vulnerability parameters, scores and index classification (Foster, 1987)

    G Groundwater occurrence Score
    Confined and artesian 0.1
    Confined 0.2
    Semi-confined 0.3
    Semi-unconfined covered 0.5
    Unconfined 1
    O Overlying lithology Score
    Unconsolidated sediments 0.4
    Consolidated porous rocks 0.5
    Aeolian sand 0.6
    Alluvial sands, fluvio-glacial, sand gravels 0.7
    Gravel alluvial 0.8
    Unconsolidated dense rocks 0.9
    Fractured or karstic Consolidate dense rocks 1
    D Depth to water table (m) Score
    >100 0.4
    50–100 0.5
    20–50 0.6
    10–20 0.7
    5–10 0.8
    2–5 0.9
    0–2 1
    GOD index value Vulnerability classes
    GOD index 0–0.1 Very low
    0.1–0.3 Low
    0.3–0.5 Moderate
    0.5–0.7 High
    0.7–1 Extremely high
    下载: 导出CSV

    Table  2.   Lineament density values and scores

    Factor Value Risk to pollution class Assigned weight to Fracture index
    Lineament density (km/km2) < 0.5 Low 0.1
    0.5–1 Moderate 0.4
    1–1.5 High 0.8
    > 1.5 Very High 1.0
    下载: 导出CSV

    Table  3.   Scores adapted to the GOD and FAI index according to aquifer type

    Aquifer type GOD score (Sg) Fracture score (Sf)
    Porous media 1.0 0.0
    Fractured rock 0.4 0.6
    Karst 0.2 0.8
    下载: 导出CSV

    Table  4.   FAI-GOD vulnerability index classification (five classes)

    FAI-GOD index Vulnerability classess
    < 0.1 Very low
    0.1–0.4 Low
    0.4–0.7 Moderate
    0.7–1.0 High
    >1 Very high
    下载: 导出CSV

    Table  5.   Results of the GOD vulnerability assessment for the study area

    Classes Percentage (%)
    Very low 8
    Low 29
    Moderate 25
    High 38
    Extremely high 0
    下载: 导出CSV
  • Abdullah TO, Ali SS, Al-Ansari NA, et al. 2015. Groundwater vulnerability mapping using lineament density on standard DRASTIC model: Case study in halabja saidsadiq basin, Kurdistan Region, Iraq. Engineering, 7(10): 644−667. DOI:  10.4236/eng.2015.710057.
    Aghamelu OP, Omeka ME, Unigwe CO. 2023. Modeling the vulnerability of groundwater to pollution in a fractured shale aquifer in SE Nigeria using information entropy theory, geospatial, and statistical modeling approaches. Modeling Earth Systems and Environment, 9(2): 2385−2406. DOI:  10.1007/s40808-022-01640-y.
    Akintorinwa OJ, Atitebi MO, Akinlalu AA. 2020. Hydrogeophysical and aquifer vulnerability zonation of a typical basement complex terrain: A case study of Odode Idanre southwestern Nigeria. Heliyon, 6(8): e04549. DOI:  10.1016/j.heliyon.2020.e04549.
    Atoui M, Agoubi B. 2022. Assessment of groundwater vulnerability and pollution risk using AVI, SPI, and RGPI indexes: Applied to southern Gabes aquifer system, Tunisia. Environmental Science and Pollution Research, 29(33): 50881−50894. DOI:  10.1007/s11356-022-19309-5.
    Atoui M, Agoubi B. 2024. Groundwater flow modeling and recharge estimation of heterogeneous aquifer: Applied to Matmata aquifer, southeastern, Tunisia. Physics and Chemistry of the Earth, Parts A/B/C, 133: 103513. DOI:  10.1016/j.pce.2023.103513.
    Awawdeh M, Al-Kharabsheh N, Obeidat M, et al. 2020. Groundwater vulnerability assessment using modified SINTACS model in Wadi Shueib, Jordan. Annals of GIS, 26(4): 377−394. DOI:  10.1080/19475683.2020.1773535.
    Awawdeh MM, Jaradat RA. 2010. Evaluation of aquifers vulnerability to contamination in the Yarmouk River basin, Jordan, based on DRASTIC method. Arabian Journal Geosciences, 3: 273−282. DOI:  10.1007/s12517-009-0074-9.
    Aydi H, Balti H, Aydi A, et al. 2022. Contribution of electrical prospecting to the aquifer characterization in El Mouazir-Matmata Nouvelle in Southern Gabes, Southeastern Tunisia. Arabian Journal of Geosciences, 15(13): 1234. DOI:  10.1007/s12517-022-10463-1.
    Ben Hamouda MF, Mamou A, Bejaoui J, et al. 2013. Hydrochemical and isotopic study of groundwater in the north djeffara aquifer, gulf of gabès, southern Tunisia. International Journal of Geosciences, 4(8): 1−10. DOI:  10.4236/ijg.2013.48a001.
    Blanchard AF, Théophile L, Marc YT, et al. 2016. Cartographie de la vulnérabilité À La pollution des aquifères du socle Précambrien: Cas de la région D'oumé (centre-ouest de la Côte D'ivoire). European Scientific Journal, 12(20): 374. DOI:  10.19044/esj.2016.v12n20p374.
    Casadiegos-Agudelo L, Cetina-Tarazona MA, Dominguez-Rivera IC, et al. 2024. Validation of the intrinsic vulnerability to pollution of fractured siliciclastic aquifers using natural background levels. Groundwater for Sustainable Development, 25: 101143. DOI:  10.1016/j.gsd.2024.101143.
    Das R, Subba Rao N, Sahoo HK, et al. 2023. Nitrate contamination in groundwater and its health implications in a semi-urban region of Titrol block, Jagatsinghpur district, Odisha, India. Physics and Chemistry of the Earth, Parts A/B/C, 132: 103424. DOI:  10.1016/j.pce.2023.103424.
    De Souza MER, de Vargas T, Belladona R. 2022. Assessment of the vulnerability to contamination of fractured aquifers based on DRASTIC method. Águas Subterrâneas, 35(3). DOI:  10.14295/ras.v35i3.30086
    Devi SP, Srinivasulu S, Raju KK. 2001. Delineation of groundwater potential zones and electrical resistivity studies for groundwater exploration. Environmental Geology, 40(10): 1252−1264. DOI:  10.1007/s002540100304.
    Foster SSD. 1987. Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. Vulnerability of soil and groundwater to pollutants. TNO committee on hydrological research. The Hague, Proc Info. 38: 69−86.
    Haidery A, Umar R. 2024. Improving groundwater vulnerability assessment in structurally controlled hard rock aquifer: Insight from lineament density and land use/land cover pattern. Environmental Monitoring and Assessment, 196(8): 723. DOI:  10.1007/s10661-024-12880-z.
    Hamza SM, Ahsan A, Imteaz MA, et al. 2017. GIS-based FRASTIC model for pollution vulnerability assessment of fractured-rock aquifer systems. Environmental Earth Sciences, 76(5): 197. DOI:  10.1007/s12665-017-6520-1.
    Hao J, Zhang YX, Jia YW, et al. 2017. Assessing groundwater vulnerability and its inconsistency with groundwater quality, based on a modified DRASTIC model: A case study in Chaoyang District of Beijing City. Arabian Journal of Geosciences, 10(6): 144. DOI:  10.1007/s12517-017-2885-4.
    Hoque MA, Khan AA, Shamsudduha M, et al. 2009. Near surface lithology and spatial variation of arsenic in the shallow groundwater: Southeastern Bangladesh. Environmental Geology, 56(8): 1687−1695. DOI:  10.1007/s00254-008-1267-3.
    Javadi S, Hashemy SM, Mohammadi K, et al. 2017. Classification of aquifer vulnerability using K-means cluster analysis. Journal of Hydrology, 549: 27−37. DOI:  10.1016/j.jhydrol.2017.03.060.
    Jemai S, Kallel A, Agoubi B, et al. 2022. Spatial and temporal rainfall variability and its controlling factors under an arid climate condition: Case of Gabes Catchment, Southern Tunisia. Environment, Development and Sustainability, 24(4): 5496−5513. DOI:  10.1007/s10668-021-01668-7.
    Jenifer MA, Jha MK. 2018. Comparative evaluation of GIS-based models for mapping aquifer vulnerability in hard-rock terrains. Environmental Earth Sciences, 77(19): 672. DOI:  10.1007/s12665-018-7821-8.
    Krasny J, 1993. Classification of transmissivity magnitude and variation. Groundwater, 31 (2): 230−236.
    Khatri N, Tyagi S. 2015. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Frontiers in Life Science, 8(1): 23−39. DOI:  10.1080/21553769.2014.933716.
    Lubianetzky TA, Dickson SE, Guo Y. 2015. Proposed method: Incorporation of fractured rock in aquifer vulnerability assessments. Environmental Earth Sciences, 74(6): 4813−4825. DOI:  10.1007/s12665-015-4471-y.
    MacDonald AM, Bell RA, Kebede S, et al. 2019. Groundwater and resilience to drought in the Ethiopian Highlands. Environmental Research Letters, 14(9): 095003. DOI:  10.1088/1748-9326/ab282f.
    Mendoza JA, Barmen G. 2006. Assessment of groundwater vulnerability in the río artiguas basin, Nicaragua. Environmental Geology, 50(4): 569−580. DOI:  10.1007/s00254-006-0233-1.
    Piscopo G. 2001. Groundwater Vulnerability Map, Explanatory Notes, Castlereagh Catchment, NSW. Department of Land and Water Conservation, Parramatta. ISBN 0 7347 5193 1 CNR 2001.017, 18p.
    Rao NS, Dinakar A, Sravanthi M, et al. 2021. Geochemical characteristics and quality of groundwater evaluation for drinking, irrigation, and industrial purposes from a part of hard rock aquifer of South India. Environmental Science and Pollution Research, 28(24): 31941−31961. DOI:  10.1007/s11356-021-12404-z.
    Rahmani B, Javadi S, Shahdany SMH. 2021. Evaluation of aquifer vulnerability using PCA technique and various clustering methods. Geocarto International, 36(18): 2117−2140. DOI:  10.1080/10106049.2019.1690057.
    Sarikhani R, Kamali Z, Dehnavi AG, et al. 2014. Correlation of lineaments and groundwater quality in dasht-e-arjan fars, SW of Iran. Environmental Earth Sciences, 72(7): 2369−2387. DOI:  10.1007/s12665-014-3146-4.
    Sekar S, Kamaraj J, Poovalingam S, et al. 2023. Appraisal of groundwater vulnerability pollution mapping using GIS based GOD index in tiruchendur, thoothukudi district, India. Water, 15(3): 520. DOI:  10.3390/w15030520.
    Shrestha S, Kafle R, Pandey VP. 2017. Evaluation of index-overlay methods for groundwater vulnerability and risk assessment in Kathmandu Valley, Nepal. Science of The Total Environment, 575: 779−790. DOI:  10.1016/j.scitotenv.2016.09.141.
    Tam VT, De Smedt F, Batelaan O, et al. 2004. Study on the relationship between lineaments and borehole specific capacity in a fractured and karstified limestone area in Vietnam. Hydrogeology Journal, 12: 662−673. DOI:  10.1007/s10040-004-0329-1.
    Torkashvand M, Neshat A, Javadi S, et al. 2021. New hybrid evolutionary algorithm for optimizing index-based groundwater vulnerability assessment method. Journal of Hydrology, 598: 126446. DOI:  10.1016/j.jhydrol.2021.126446.
    Tsegay T, Birhanu B, Azagegn T, et al. 2024. Assessing groundwater vulnerability to pollution in a rapidly urbanizing river basin using a modified DRASTIC land use–lineament density method. Geological Journal, 59(12): 3278−3295. DOI:  10.1002/gj.5059.
  • [1] Li-qiang Ge, Xin Yuan, Liu Yang2025:  Application of metagenomics in the study of groundwater microorganisms, Journal of Groundwater Science and Engineering, 13, 90-100. doi: 10.26599/JGSE.2025.9280041
    [2] Hayder H. Kareem, Shahla Abdulqader Nassrullah2025:  Impact of climate changes on Arizona State precipitation patterns using high-resolution climatic gridded datasets, Journal of Groundwater Science and Engineering, 13, 34-46. doi: 10.26599/JGSE.2025.9280037
    [3] Jing-tao Shi, Ge Gao, Jun-jian Liu, Yu-ge Jiang, Bo Li, Xiao-yan Hao, Jun-chao Zhang, Zhao-yi Li, Huan Sun2025:  Ecological vulnerability assessment and driving force analysis of small watersheds in Hilly Regions using sensitivity-resilience-pressure modeling, Journal of Groundwater Science and Engineering, 13, 209-224. doi: 10.26599/JGSE.2025.9280050
    [4] Stephen Pitchaimani V, Narayanan MSS, Abishek RS, Aswin SK, Jerin Joe RJ2024:  Delineation of groundwater potential zones using remote sensing and Geographic Information Systems (GIS) in Kadaladi region, Southern India, Journal of Groundwater Science and Engineering, 12, 147-160. doi: 10.26599/JGSE.2024.9280012
    [5] Guo Jin-xing, Li Zhi-ping, Stefan Catalin2022:  Managed aquifer recharge (MAR) applications in China–achievements and challenges, Journal of Groundwater Science and Engineering, 10, 57-69. doi: 10.19637/j.cnki.2305-7068.2022.01.006
    [6] Vinay Kumar Gautam, Mahesh Kothari, P.K. Singh, S.R. Bhakar, K.K. Yadav2022:  Analysis of groundwater level trend in Jakham River Basin of Southern Rajasthan, Journal of Groundwater Science and Engineering, 10, 1-9. doi: 10.19637/j.cnki.2305-7068.2022.01.001
    [7] Cherif Kessar, Yamina Benkesmia, Bilal Blissag, Lahsen Wahib Kébir2021:  Delineation of groundwater potential zones in Wadi Saida Watershed of NW-Algeria using remote sensing, geographic information system-based AHP techniques and geostatistical analysis, Journal of Groundwater Science and Engineering, 9, 45-64. doi: 10.19637/j.cnki.2305-7068.2021.01.005
    [8] KHELFAOUI Hakim, DAJBRI Larbi, LAKHAL Fatima Zohra, CHAFFAI Hicham, HANI Azzedine, SAYAD Lamine2020:  Determination of the origin of mineralization and groundwater salinity in the Adrar region in the southwest of Algeria, Journal of Groundwater Science and Engineering, 8, 158-171. doi: 10.19637/j.cnki.2305-7068.2020.02.007
    [9] Fatima Zahra FAQIHI, Anasse BENSLIMANE, Abderrahim LAHRACH, Mohamed CHIBOUT, Mohamed EL MOKHTAR2020:  Recognition of the hydrogeological potential using electrical sounding in the KhemissetTiflet region, Morocco, Journal of Groundwater Science and Engineering, 8, 172-179. doi: 10.19637/j.cnki.2305-7068.2020.02.008
    [10] Negar Fathi, Mohammad Bagher Rahnama, Mohammad Zounemat Kermani2020:  Spatial analysis of groundwater quality for drinking purpose in Sirjan Plain, Iran by fuzzy logic in GIS, Journal of Groundwater Science and Engineering, 8, 67-78. doi: 10.19637/j.cnki.2305-7068.2020.01.007
    [11] Ahmed Mohammad Tofayal, Monir Minhaj Uddin, Hasan Md Yeasir, Rahman Md Mominur, Rifat Md Shamiul Islam, Islam Md Naim, Khan Abu Shamim, Rahman Md Mizanur, Islam Md Shajidul2020:  Hydro-geochemical evaluation of groundwater with studies on water quality index and suitability for drinking in Sagardari, Jashore, Journal of Groundwater Science and Engineering, 8, 259-273. doi: 10.19637/j.cnki.2305-7068.2020.03.006
    [12] Muhammad Nauman Malik, Mehdi Murtuza, Iqbal Asif, Bakar Muhammad Saifullah Abu, Brahim Aissa, Dk Nur Afiqah Jalwati Puteri, Amer Farhan Rafique2019:  Adaptive state estimation of groundwater contaminant boundary input flux in a 2-dimensional aquifer, Journal of Groundwater Science and Engineering, 7, 373-382. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.008
    [13] Alhassan H Ismai, Muntasir A Shareef, Wesam Mahmood2018:  Hydrochemical characterization of groundwater in Balad district, Salah Al-Din Governorate, Iraq, Journal of Groundwater Science and Engineering, 6, 306-322. doi: 10.19637/j.cnki.2305-7068.2018.04.006
    [14] BAI Bing, CHENG Yan-pei, JIANG Zhong-cheng, ZHANG Cheng2017:  Climate change and groundwater resources in China, Journal of Groundwater Science and Engineering, 5, 44-52.
    [15] Chamroeun SOK, Sokuntheara CHOUP2017:  Climate change and groundwater resources in Cambodia, Journal of Groundwater Science and Engineering, 5, 31-43.
    [16] ZHANG Xiang-yang, CHEN Zong-yu, YANG Guo-min, TU Le-yi, HU Shui-ming2016:  Krypton-85 dating of shallow aquifer in Hebei Plain, Journal of Groundwater Science and Engineering, 4, 328-332.
    [17] ZHANG Chun-chao, WANG Wen-Ke, SUN Yi-bo, LI Xiang-quan,HOU Xin-wei2015:  Processes of hydrogeochemical evolution of groundwater in the Guanzhong Basin, China, Journal of Groundwater Science and Engineering, 3, 136-146.
    [18] LIU Jun, CHENG Jian-mei, JIANG Fang-yuan2015:  Methodological study of coastal geological hazard assessment based on GIS, Journal of Groundwater Science and Engineering, 3, 77-85.
    [19] Liang ZHU, Wei-dong KANG, Ji-chao SUN, Jing-tao LIU2014:  Quantitative Calculation of Groundwater Vulnerability Assessment Based on Quantification Theory III, Journal of Groundwater Science and Engineering, 2, 78-85.
    [20] Jiankang Zhang, Yanpei Cheng, Hua Dong, Qingshi Guo, Kun Liu, Fawang Zhang2013:  Study on Ecological Environment and Sustainable Land Use Based on Satellite Remote Sensing, Journal of Groundwater Science and Engineering, 1, 89-96.
  • 加载中
图(11) / 表ll (5)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  13
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-12
  • 录用日期:  2025-11-15
  • 网络出版日期:  2026-01-25
  • 刊出日期:  2026-03-15

目录

    /

    返回文章
    返回