• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Impact of Cr(III) complexation with organic acid on its adsorption in silts and fine sands

Zi-xuan Zhang Lin Wu Xiang-ke Kong Hui Li Le Song Ping Wang Yan-yan Wang

Zhang ZX, Wu L, Kong XK, et al. 2024. Impact of Cr(III) complexation with organic acid on its adsorption in silts and fine sands. Journal of Groundwater Science and Engineering, 12(4): 347-359 doi:  10.26599/JGSE.2024.9280026
Citation: Zhang ZX, Wu L, Kong XK, et al. 2024. Impact of Cr(III) complexation with organic acid on its adsorption in silts and fine sands. Journal of Groundwater Science and Engineering, 12(4): 347-359 doi:  10.26599/JGSE.2024.9280026

doi: 10.26599/JGSE.2024.9280026

Impact of Cr(III) complexation with organic acid on its adsorption in silts and fine sands

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Comparative analysis of spectral responses of Cr(III) and Cr(III)-CA

    (a: UV-vis, b: FTIR)

    Figure  2.  Sorption of Cr(III) and Cr(III)-CA on porous media (a: Silts; b: Fine sands)

    Figure  3.  Adsorption kinetics fitting results of Cr(III)-CA on porous media

    Notes: (Fine sand: a, Pseudo first-order; b, Pseudo first-order, c, Elvoich. silt; d, Pseudo first-order; e, Pseudo first-order; f, Elvoich. ■: C0 2.5 mg/L; ●: C0 10.9 mg/L; ▲: C0 26.5 mg/L)

    Figure  4.  Isothermal adsorption fitting results of Cr(III)-CA on porous media

    (a: Fine sands; b: Silts)

    Figure  5.  Comparison of Cr(III)-CA concentration before and after desorption

    Figure  6.  Specific surface areas-normalized sorption isotherms of Cr(III)-CA on porous media

    Figure  7.  Changes of Cr(III)-CA adsorption on porous media at various pH

    Notes: a: Adsorption curve on fine sands; b: Adsorption curve on silts; c: Adsorption capacity varies with pH

    Figure  8.  Effect of ionic strength and cations on the adsorption of Cr(III)-CA by silts (a: Ionic strength; b: Different cations)

    Figure  9.  Effect of iron-aluminum oxides on the adsorption of Cr(III)-CA

    Table  1.   Physical and chemical properties of the experimental soils

    Porous media TOC (g/kg) pH CEC (cmol/kg) Fe2O3 (%) Ratio of particle size (%)
    0–2 μm 2–20 μm 20–100 μm
    Silts 8.5 8.22 6.8 6.13 10.52 74.39 15.09
    Fine sands 7.2 7.52 5.6 3.48 1.07 7.28 91.65
    下载: 导出CSV

    Table  2.   Fitting parameters of Pseudo-second-order kinetic model for Cr(III)-CA adsorption

    Porous mediaFine sandsSilts
    C0 (mg/L)2.5010.9026.502.5010.9026.50
    Qe,exp (μg/g)9.3615.0826.0020.8089.43194.99
    Qe,cal (μg/g)6.2414.0426.0020.8087.87193.43
    K2 (g·h/μg)0.160.070.040.050.010.01
    R20.9860.9590.9940.9990.9980.998
    下载: 导出CSV

    Table  3.   Fitting parameters of isothermal adsorption models for Cr(III)-CA adsorption

    Porous media Freundlich Langmuir
    Kf [(μg/g)·(L/μg)n] n R2 Qmax (μg/g) KL (L/μg) R2
    Fine sands 7.17 0.31 0.94 30.27 0.09 0.97
    Silts 45.12 0.43 0.98 296.11 0.11 0.99
    下载: 导出CSV
  • Cooper E, Vasudevan D. 2009. Hydroxynaphthoic acid isomer sorption onto goethite. Journal of Colloid and Interface Science, 333(1): 85−96. DOI: 10.1016/j.jcis.2009.02.023.
    Cao XH, Guo J, Mao JD, et al. 2011. Adsorption and mobility of Cr(III)-organic acid complexes in soils. Journal of Hazardous Materials, 192(3): 1533−1548. DOI: 10.1016/j.jhazmat.2011.06.076.
    Chiavola A, Amato E, Boni M. 2019. Comparison of different iron oxide adsorbents for combined arsenic, vanadium and fluoride removal from drinking water. International Journal of Environmental Science & Technology, 16(10): 6053−6064. DOI: 10.1007/s13762-019-02316-4.
    Dai RN, Liu J, Yu CY, et al. 2009. A comparative study of oxidation of Cr(III) in aqueous ions, complex ions and insoluble compounds by manganese-bearing mineral (birnessite). Chemosphere, 76(4): 536−541. DOI: 10.1016/j.chemosphere.2009.03.009.
    Gustafsson J, Persson I, Oromieh A, et al. 2014. Chromium(III) complexation to natural organic matter: Mechanisms and modeling. Environment Science & Technology, 48: 1753−1761. DOI: 10.1021/es404557e.
    Gérard F. 2016. Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils—A myth revisited. Geoderma, 262(15): 213−226. DOI: 10.1016/j.geoderma.2015.08.036.
    Guo HM, Chen Y, Hu HY, et al. 2020. High hexavalent chromium concentration in groundwater from a deep aquifer in the baiyangdian basin of the north China plain. Environmental Science & Technology, 54(16): 10068−10077. DOI: 10.1021/acs.est.0c02357.
    Hizal J, Apak R. 2013. Kinetic investigation and surface complexation modeling of Cd(Ⅱ) adsorption onto feldspar. Fresenius Environmental Bulletin, 22(3): 766−771. DOI: 10.1021/ma00183a057.
    Hao YY, Ma HR, Wang Q, et al. 2022. Complexation behavior and removal of organic-Cr(III) complexes from the environment: A review. Ecotoxicology and Environmental Safety, 240: 113676. DOI: 10.1016/j.ecoenv.2022.113676.
    James B, Bartlett R. 1983. Behavior of chromium in soils: V. Fate of organically complexed Cr(III) added to soil. Journal of Environmental Quality, 12(2): 169−172. DOI: 10.2134/jeq1983.00472425001200020003x.
    Kah M, Sigmund G, Xiao F, et al. 2017. Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials. Water Research, 124: 673−692. DOI: 10.1016/j.watres.2017.07.070.
    Kanagaraj G, Elango L. 2019. Chromium and fluoride contamination in groundwater around leather tanning industries in southern India: implications from stable isotopic ratio Delta Cr-53/Delta Cr-52, geochemical and geostatistical modelling. Chemosphere, 220: 943−953. DOI: 10.1016/j.chemosphere.2018.12.105.
    Kong XK, Li CH, Wang P, et al. 2019. Soil pollution characteristics and microbial responses in a vertical profile with long-term tannery sludge contamination in Hebei, China. International Journal of Environmental Research and Public Health, 16(4): 563−570. DOI: 10.3390/ijerph16040563.
    Kong XK, Wang Y, Ma LS, et al. 2020. Leaching behaviors of chromium (III) and ammonium-nitrogen from a tannery sludge in north China: Comparison of batch and column investigations. International Journal of Environmental Research and Public Health, 17: 6003. DOI: 10.3390/ijerph17166003.
    Luo Z, Wadhawan A, Bouwer E. 2010. Sorption behavior of nine chromium (III) organic complexes in soil. International Journal of Environmental Science and Technology, 7(1): 1−10. DOI: 10.1007/BF03326111.
    Li F. 2009. Synthesis, characterization and preliminary application of several organic chromium complexes. MS thesis, Zhenjiang: Jiangsu University: 23. (in Chinese)
    Li H, Han ZT, Deng Q, et al. 2023. Assessing the effectiveness of nanoscale zero-valent iron particles produced by green tea for Cr(VI)-contaminated groundwater remediation. Journal of Groundwater Science and Engineering, 11(1): 55−67. DOI: 10.26599/JGSE.2023.9280006.
    Liu W, Zhang J, Zhang C, et al. 2011. Sorption of norfloxacin by lotus stalk-based activated carbon and iron-doped activated alumina: Mechanisms, isotherms and kinetics. Chemical Engineering Journal, 171(2): 431–438. DOI: 10.1016/j.cej.2011.03.099.
    Li BR, Liao P, Liu P, et al. 2022. Formation, aggregation and transport of NOM-Cr(III) colloids in aquatic environments. Environmental Science-Nano, 9(3): 1133−1145. DOI: 10.1039/d1en00861g.
    Martin S, Shchukarev A, Hanna K, et al. 2015. Kinetics and mechanisms of ciprofloxacin oxidation on hematite surfaces. Environment Science & Technology, 49(20): 12197−12205. DOI: 10.1021/acs.est.5b02851.
    Merdoud O, Cameselle C, Boulakradeche MO, et al. 2016. Removal of heavy metals from contaminated soil by electro dialytic remediation enhanced with organic acids. Environmental Science-Processes & Impacts, 18(11): 1440−1448. DOI: 10.1039/c6em00380j.
    Marsac R, Martin S, Boily J, et al. 2016. Oxolinic acid binding at goethite and akaganeite surfaces: Experimental study and modeling. Environmental Science & Technology, 50(2): 660−678. DOI: 10.1021/acs.est.5b04940.
    Ma H, Zhou J, Hua L, et al. 2017. Chromium recovery from tannery sludge by bioleaching and its reuse in tanning process. Journal of Cleaner Production, 142(8): 2752−2760. DOI: 10.1016/j.jclepro.2016.10.193.
    Manoj S, RamyaPriya R, Elango L. 2021. Long-term exposure to chromium contaminated waters and the associated human health risk in a highly contaminated industrialized region. Environmental Science and Pollution Research, 28(4): 4276−4288. DOI: 10.1007/s11356-020-10762-8.
    Puzon G, Tokala R, Zhang H, et al. 2008. Mobility and recalcitrance of organo-chromium(III) complexes. Chemosphere, 70(11): 2054−2059. DOI: 10.1016/j.chemosphere.2007.09.010.
    Pantazopoulou E, Zouboulis A. et al. 2017. Chemical toxicity and ecotoxicity evaluation of tannery sludge stabilized with ladle furnace slag. Journal of Environmental Management, 216: 257−262. DOI: 10.1016/j.jenvman.2017.03.077.
    Qiang TT, Bu QQ, Ren LF, et al. 2014. Adsorption behaviors of Cr(III) on carboxylated collagen fiber. Journal of Applied Polymer Science, 131(11): 2928−2935. DOI: 10.1002/app.40285.
    Reijonen I, Hartikainen H. 2016. Oxidation mechanisms and chemical bioavailability of chromium in agricultural soil-pH as the master variable. Applied Geochemistry, 74: 84−93. DOI: 10.1016/j.apgeochem.2016.08.017.
    Schwab A, He Y, Banks M. 2005. The influence of organic ligands on the retention of lead in soil. Chemosphere, 61(6): 856−866. DOI: 10.1016/j.chemosphere.2005.04.098.
    Sethunathan N, Megharaj M, Smith L, et al. 2005. Microbial role in the failure of natural attenuation of Chromium(Ⅵ) in long-term tannery waste contaminated soil. Agriculture, Ecosystems & Environment, 105(4): 657–661. DOI: 10.1016/j.agee.2004.08.008.
    Shashirekha V, Sridharan MR, Swamy, M. 2015. Biochemical response of cyanobacterial species to trivalent chromium stress. Algal Research, 12: 421−430. DOI: 10.1016/j.algal.2015.10.003.
    Shi GW, Li YS, Liu YC, et al. 2023. Predicting the speciation of ionizable antibiotic ciprofloxacin by biochars with varying carbonization degrees. RSC Advances, 13: 9892−9902. DOI: 10.1039/d3ra00122a.
    Tripathi S, Chaurasia S. 2020. Detection of chromium in surface and groundwater and its bio-absorption using bio-wastes and vermiculite. Engineering Science and Technology-an International Journal-Jestech, 23(5): 1153−1161. DOI: 10.1016/j.jestch.2019.12.002.
    Marsac R, Martin S, Boily J, et al. 2010. Oxolinic acid binding at goethite and akaganeite surfaces: Experimental study and modeling. Environmental Science & Technology, 29(6): 997−1003. (in Chinese)
    Wang CL, Liu CL, Pang YJ, et al. 2013. Adsorption behavior of hexavalent chromium in vadose zone. Journal of Groundwater Science and Engineering, 1(3): 83−88. DOI: 10.26599/JGSE.2013.9280034.
    Wang DD, He SY, Shan C, et al. 2016. Chromium speciation in tannery effluent after alkaline precipitation: Isolation and characterization. Journal of Hazardous Materials, 316: 169−177. DOI: 10.1016/j.jhazmat.2016.05.021.
    Wang P, Kong XK, Ma LS, et al. 2022. Metal(loid)s removal by zeolite-supported iron particles from mine contaminated groundwater: Performance and mechanistic insights. Environmental Pollution, 313: 120155. DOI:  10.1016/j.envpol.2022.120155.
    Yang SY, Cheng Y, Zou HT, et al. 2022. Synergistic roles of montmorillonite and organic matter in reducing bioavailable state of chromium in tannery sludge. Environmental Science and Pollution Research, 29(58): 87298−87309. DOI: 10.1007/s11356-022-21897-1.
    Zeng J, Gou M, Tang YQ, et al. 2016. Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community. Bioresource Technology, 218: 859−866. DOI: 10.1016/j.biortech.2016.07.051.
    Zhang W, Chen Z, Han ZT, et al. 2022. Adsorption characteristics of Pb(Ⅱ) and Cd(Ⅱ) in water bodies onto biochars derived from 7-ACA fermented residue. Safety and Environmental Engineering, 29(4): 212−220. (in Chinese) DOI: 10.13578/i.cnki.issn.1671-1556.20210694.
  • [1] Hui Li, Zhan-tao Han, Qiang Deng, Chun-xiao Ma, Xiang-ke Kong2023:  Assessing the effectiveness of nanoscale zero-valent iron particles produced by green tea for Cr(VI)-contaminated groundwater remediation, Journal of Groundwater Science and Engineering, 11, 55-67. doi: 10.26599/JGSE.2023.9280006
    [2] Sun Yu-kun, Liu Feng, Wang Hua-jun, Gao Xin-zhi2022:  Numerical simulation of operation performance on production and injection of a double well geothermal system in Kailu Basin, Inner Mongolia, Journal of Groundwater Science and Engineering, 10, 196-208. doi: 10.19637/j.cnki.2305-7068.2022.02.008
    [3] Yu Chu, Wu Li-jie, Zhang Yi-long, Wang Xiu-ya, Wang Zhan-chuan, Zhang Zhou2022:  Effect of groundwater on the ecological water environment of typical inland lakes in the Inner Mongolian Plateau, Journal of Groundwater Science and Engineering, 10, 353-366. doi: 10.19637/j.cnki.2305-7068.2022.04.004
    [4] Kirlas Marios C2021:  Assessment of porous aquifer hydrogeological parameters using automated groundwater level measurements in Greece, Journal of Groundwater Science and Engineering, 9, 269-278. doi: 10.19637/j.cnki.2305-7068.2021.04.001
    [5] HAO Hong-bo, LV Jie, CHEN Yan-mei, WANG Chuan-zi, HUANG Xiao-rui2021:  Research advances in non-Darcy flow in low permeability media, Journal of Groundwater Science and Engineering, 9, 83-92. doi: 10.19637/j.cnki.2305-7068.2021.01.008
    [6] MIAO Qing-zhuang, ZHOU Xiao-ni, WANG Gui-ling, ZHANG Wei, LIU Feng, XING Lin-xiao2019:  Research on changes of hydrodynamics and ion-exchange adsorption in Brackish-Water Interface, Journal of Groundwater Science and Engineering, 7, 94-105. doi: 10.19637/j.cnki.2305-7068.2019.02.001
    [7] YAN Xiao-san, QIAN Jia-zhong, MA Lei2019:  Experimental study on the velocity-dependent dispersion of the solute transport in different porous media, Journal of Groundwater Science and Engineering, 7, 106-114. doi: 10.19637/j.cnki.2305-7068.2019.02.002
    [8] GUO Si-jia, GUO Gui-ping2018:  Enhancement of gaseous mercury (Hg0) adsorption for the modified activated carbons by surface acid oxygen function groups, Journal of Groundwater Science and Engineering, 6, 104-114. doi: 10.19637/j.cnki.2305-7068.2018.02.004
    [9] MA Zhi-yuan, XU Yong, ZHAI Mei-jing, WU Min2017:  Clogging mechanism in the process of reinjection of used geothermal water: A simulation research on Xianyang No.2 reinjection well in a super-deep and porous geothermal reservoir, Journal of Groundwater Science and Engineering, 5, 311-325.
    [10] TONG Shao-qing, DONG Yan-hui, ZHANG Qian, SONG Fan2017:  Visualizing complex pore structure and fluid flow in porous media using 3D printing technology and LBM simulation, Journal of Groundwater Science and Engineering, 5, 254-265.
    [11] GUO Jiao, SHI Ying-chun, WU Li-jie2015:  Gravity erosion and lithology in Pisha sandstone in southern Inner Mongolia, Journal of Groundwater Science and Engineering, 3, 45-58.
    [12] ZHANG Zhi-qiang, LI Hong-chao, WANG Yu-qing, ZHANG li-ye, WANG Ying2014:  Application of Visual MODFLOW to simulation of migration in Cr6+ contaminated site, Journal of Groundwater Science and Engineering, 2, 28-35.
    [13] Liang ZHU, Wei-dong KANG, Ji-chao SUN, Jing-tao LIU2014:  Quantitative Calculation of Groundwater Vulnerability Assessment Based on Quantification Theory III, Journal of Groundwater Science and Engineering, 2, 78-85.
    [14] Cui-ling Wang, Chang-li Liu, Ya-jie Pang, Li-xin Pei, Yun Zhang2013:  Adsorption Behavior of Hexavalent Chromium in Vadose Zone, Journal of Groundwater Science and Engineering, 1, 83-88.
  • 加载中
图(9) / 表ll (3)
计量
  • 文章访问数:  244
  • HTML全文浏览量:  119
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-20
  • 录用日期:  2024-08-17
  • 网络出版日期:  2024-12-06
  • 刊出日期:  2024-12-09

目录

    /

    返回文章
    返回