• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Assessing the potential of underground storage of flood water: A case study from Southern Punjab Region in Pakistan

Ghulam Zakir-Hassan Jehangir F Punthakey Ghulam Shabir Faiz Raza Hassan

Zakir-Hassan G, Punthakey Jehangir F, Shabir G, et al. 2024. Assessing the potential of underground storage of flood water: A case study from Southern Punjab Region in Pakistan. Journal of Groundwater Science and Engineering, 12(4): 387-396 doi:  10.26599/JGSE.2024.9280029
Citation: Zakir-Hassan G, Punthakey Jehangir F, Shabir G, et al. 2024. Assessing the potential of underground storage of flood water: A case study from Southern Punjab Region in Pakistan. Journal of Groundwater Science and Engineering, 12(4): 387-396 doi:  10.26599/JGSE.2024.9280029

doi: 10.26599/JGSE.2024.9280029

Assessing the potential of underground storage of flood water: A case study from Southern Punjab Region in Pakistan

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Applications and MAR technology classification (sub-type) (IGRAC, 2014)

    Figure  2.  Map of study area and Thiessen Polygons

    Figure  3.  Average monthly rainfall (mm) at Multan, Sahiwal, Bahawalnagar and Bahawalpur

    Figure  4.  Long-term (1967–2020) mean monthly maximum and minimum temperatures at four stations

    Figure  5.  Fence diagram showing of the study area showing subsurface lithology

    Figure  6.  Average water level rise/fall at different locations in study area in pre monsoon 2015–2020

    Figure  7.  Average water level rise/fall at different locations in study area in post monsoon 2015–2020

    Figure  8.  Depth to water table (DTWT-m) at different piezometers in Pre 2020 and Pre 2015

    Figure  9.  Depth to water table (DTWT-m) at different piezometers in Post 2020 and Post 2015

    Figure  10.  Increasing trend of GWRP for pre-2015 to pre-2020

    Figure  11.  Increasing trend of GWRP for post-2015 to post-2020

    Figure  12.  Ground water recharge potential during post-2020

    Figure  13.  Ground water recharge potential in pre_2020

    Table  1.   Statistics of DTWT below natural land surface from 2015–2020

    Parameter *Pre 2015 **Post 2015 Pre 2016 Post 2016 Pre 2017 Post 2017 Pre 2018 Post 2018 Pre 2019 Post 2019 Pre 2020 Post 2020
    Max 23.2 22.6 23.8 22.6 23.8 22.7 24.0 22.7 24.1 22.8 24.3 22.8
    Min 5.6 6.0 5.6 6.0 5.8 5.9 6.1 6.0 6.2 6.2 6.3 6.2
    Avg 16.6 16.4 16.7 16.6 16.8 16.8 17.0 17.0 17.2 17.1 17.4 17.1
    STDDEV 4.5 4.3 4.6 4.4 4.5 4.3 4.5 4.3 4.5 4.4 4.6 4.4
    Notes: *Pre monsoon; **Post monsoon
    下载: 导出CSV

    Table  2.   Statistics of DTWL during Post-Monsoon periods from 2015 to 2020

    Total Water level Rise/fall in Post monsoon in 5 years (m) Drop/Rise in water level in Post monsoon in per year (m)
    Max 3.49 0.70
    Min −1.49 −0.30
    Avg 0.75 0.15
    STDDEV 0.97 0.19
    下载: 导出CSV

    Table  3.   Statistics of DTWL in Pre-Monsoon periods from 2015 to 2020

    TotalWater level Rise/fall in Pre monsoon in 5 years (m)Drop/Rise in water level in Pre monsoon in per year (m)
    Max2.080.42
    Min−5.16−1.03
    Avg.−0.87−0.17
    STDDEV1.130.23
    下载: 导出CSV

    Table  4.   GWRP for the period of pre-2015 to pre-2020 at different locations in the study area

    Parameter Area of polygon
    (km2)
    Natural Surface Level
    (NSL) (m-amsl)
    GWRP (BCM)
    Pre-2020 Pre-2019 Pre-2018 Pre-2017 Pre-2016 Pre-2015
    Total 1522 1.88 1.85 1.82 1.79 1.78 1.76
    Max 111.83 148 0.186 0.185 0.184 0.183 0.182 0.181
    Min 18.69 134 0.003 0.002 0.001 0.000 −0.001 −0.002
    Avg 55.88 139 0.075 0.074 0.073 0.072 0.071 0.070
    STD 26.66 4 0.047 0.047 0.046 0.046 0.045 0.045
    下载: 导出CSV

    Table  5.   GWRP for the period of post-2015 to post-2020

    Parameter Area of polygon
    (km2)
    Natural Surface Level
    (NSL) (m-amsl)
    GWRP (BCM)
    Post-2020 Post-2019 Post-2018 Post-2017 Post-2016 Post-2015
    Total 1522 1.87 1.85 1.83 1.80 1.77 1.74
    Max 111.83 148 0.176 0.175 0.174 0.173 0.172 0.172
    Min 18.69 134 0.000 −0.001 −0.001 −0.001 −0.002 −0.004
    Avg 55.88 139 0.075 0.074 0.073 0.072 0.071 0.069
    STD 26.66 4 0.047 0.047 0.046 0.046 0.045 0.044
    下载: 导出CSV
  • Abid M, Scheffran J, Schneider UA, et al. 2019. Farmer perceptions of climate change, observed trends and adaptation of agriculture in Pakistan. Environmental Manage, 63(1): 110−123. DOI: 10.1007/s00267-018-1113-7.
    ADB. 2018. Pakistan: Punjab irrigated agriculture investment program: Completion Report, Project Number: 37231-013, Asian Development Bank.
    APHA. 2021. Standard Methods for the Examination of Water 23rd Ed: American Public Health Association (APHA).
    Bennett GD, Ata-Ur-Rehman Sheikh IA, Ali S. 1967. Analysis of aquifer tests in the Punjab Region of West Pakistan: Geological survey water-supply paper 1608-G, USGS, United States Government Printing Office, Washington DC.
    Chinnasamy P, Muthuwatta L, Eriyagama N, et al. 2017. Modeling the potential for floodwater recharge to offset groundwater depletion: A case study from the Ramganga basin, India. Sustainable Water Resources Management, 4(2): 331−344. DOI: 10.1007/s40899-017-0168-6.
    Dillon P. 2005. Future management of aquifer recharge. Hydrogeology Journal, 13(1): 313−316. DOI: 10.1007/s10040-004-0413-6.
    Dillon P. 2009. Water recycling via managed aquifer recharge in Australia. Boletín Geológico y Minero, 120(2): 121−130.
    Dillon PJ. (Ed.). 2020. Management of aquifer recharge for sustainability: Summary of the 4th International Symposium on Artificial Recharge of Groundwater, Adelaide, September 2002. CRC Press.
    Gale I, Macdonald D, Calow R, et al. 2006. Managed aquifer recharge: An assessment of its role and effectiveness in watershed management: Final report for DFID KAR project R8169, Augmenting groundwater resources by artificial recharge: AGRAR.
    Gale I, Neumann I, Calow R, et al. 2002. The effectiveness of artificial recharge of groundwater: A review. British Geological Survey Commercial Report CR/02/108N.
    GOP. 2018. Pakistan Bureau of Statistics, Government of Pakista.
    Greenman DW, Swarzenski WV, Bennett GD. 1967. Ground-water hydrology of Punjab-West Pakistan with emphasis on Problems caused by canal irrigation: Geological survey water-supply paper 1608-H, USGS, USAID, Washigton DC.
    Hasan MB, Driessen PP, Majumder S, et al. 2019. Factors affecting consumption of water from a newly introduced safe drinking water system: The case of managed aquifer recharge (MAR) systems in Bangladesh. Water, 11(12): 2459. DOI: 10.3390/w11122459.
    Hassan GZ, Bhutta MN. 1996. A water balance model to estimate groundwater recharge in Rechna doab, Pakistan. Irrigation and Drainage Systems, 10: 297−317. DOI: 10.1007/BF01104895.
    Hassan GZ, Hassan FR, Shabbir G. 2019. Impact of climate change on groundwater use for sustainable agriculture and food production in Indus Basin of Pakistan. Paper presented at the 1st International Conference on Sustainable Agriculture: Food Security under Changing Climate Scenarios: April, 3-5, 2019, Ghazi University, Dera Ghazi Khan, Punjab, Pakistan.
    IAH-MAR. 2018. International Association of Hydrogeologists Commission on Managing Aquifer Recharge.
    IGRAC. 2014. IGRAC MAR Portal International Groundwater Resources Assessment Centre.
    Imran M, Ali A, Ashfaq M, et al. 2018. Impact of Climate Smart Agriculture (CSA) practices on cotton production and livelihood of farmers in Punjab, Pakistan. Sustainability, 10(6): 2101. DOI: 10.3390/su10062101.
    IRI. 2019. Recharge of aquifer for groundwater management in Punjab (2016-2019): Report No IRR-GWMC/121, Groundwater Management Cell, Irrigation Reserach Institute (IRI), Irrigation Department, Lahore, Pakistan.
    IWASRI. 1995. Performance evaluation of different types of canal lining in FESS, Pakistan: Interim report of surface water section of the International Waterlogging and Salinity Research Institute (IWASRI), Lahore, Pakistan.
    Khalid S, Shahid M, Natasha Shah AH, et al. 2020. Heavy metal contamination and exposure risk assessment via drinking groundwater in Vehari, Pakistan. Environmental Science and Pollution Research, 27(32): 39852−39864. DOI: 10.1007/s11356-020-10106-6.
    Konikow LF, Kendy E. 2005. Groundwater depletion: A global problem. Hydrogeology Journal, 13(1): 317–320. DOI: 10.1007/s10040-004-0411-8.
    Kuang X, Liu J, Scanlon BR, et al. 2024. The changing nature of groundwater in the global water cycle. Science, 383(6686): eadf0630. DOI: 10.1126/science.adf0630.
    Maréchal JC, Dewandel B, Ahmed S, et al. 2006. Combined estimation of specific yield and natural recharge in a semi-arid groundwater basin with irrigated agriculture. Journal of Hydrology, 329(1-2): 281−293. DOI: 10.1016/j.jhydrol.2006.02.022.
    Missimer TM, Guo W, Maliva RG, et al. 2015. Enhancement of wadi recharge using dams coupled with aquifer storage and recovery wells. Environmental Earth Sciences, 73(12): 7723−7731. DOI: 10.1007/s12665-014-3410-7.
    Pakparvar M, Walraevens K, Cheraghi SA, et al. 2016. Assessment of groundwater recharge influenced by floodwater spreading: An integrated approach with limited accessible data. Hydrological Sciences Journal, 1–18. DOI: 10.1080/02626667.2016.1183164.
    Papa F, Frappart F. 2021. Surface water storage in rivers and wetlands derived from satellite observations: A review of current advances and future opportunities for hydrological sciences. Remote Sensing, 13(20): 4162. DOI: 10.3390/rs13204162.
    Pérez-Uresti SI, Ponce-Ortega JM, Jiménez-Gutiérrez A. 2019. A multi-objective optimization approach for sustainable water management for places with over-exploited water resources. Computers & Chemical Engineering, 121: 158−173. DOI: 10.1016/j.compchemeng.2018.10.003.
    Qureshi AS, McCornick PG, Qadir M, et al. 2008. Managing salinity and waterlogging in the Indus Basin of Pakistan. Agricultural Water Management, 95(1): 1−10. DOI: 10.1016/j.agwat.2007.09.014.
    Qureshi RH, Ashraf M. 2019. Water security issues of agriculture in Pakistan. Pakistan Academy of Sciences (PAS), Islamabad, Pakistan, 1: 41.
    Ross A. 2018. Speeding the transition towards integrated groundwater and surface water management in Australia. Journal of Hydrology, 567: e1−e10. DOI: 10.1016/j.jhydrol.2017.01.037.
    Ross A, Hasnain S. 2018. Factors affecting the cost of Managed Aquifer Recharge (MAR) schemes. Sustainable Water Resources Management, 4(2): 179−190. DOI: 10.1007/s40899-017-0210-8.
    Sherif M, Sefelnasr A, Al Rashed M, et al. 2023. A review of managed aquifer recharge potential in the Middle East and North Africa Region with examples from the Kingdom of Saudi Arabia and the United Arab Emirates. Water, 15(4): 742. DOI: 10.3390/w15040742.
    Shiklomanov IA. 2000. Appraisal and assessment of world water resources. Water International, 25(1): 11−32. DOI: 10.1080/02508060008686794.
    Siddiqi A, Wescoat JL. 2013. Energy use in large-scale irrigated agriculture in the Punjab province of Pakistan. Water International, 38(5): 571−586. DOI: 10.1080/02508060.2013.828671.
    Sindhu AS. 2010. District Vehari: Hazard, vulnerability and development profile: Rural Development Policy Institute (RDPI), Islamabad, Pakistan.
    Sloan S, Cook PG, Wallis I. 2023. Managed Aquifer Recharge in Mining: A Review. Groundwater, 61(3): 305−317. DOI: 10.1111/gwat.13311.
    USGS. 1967. Groundwater hydrology of the Punjab–West Pakistan with emphasis on problem caused by canal irrigation. US Government Printing Office Washington DC: 20402.
    WB. 2017. Climate-Smart Agriculture in Pakistan. CSA Country Profiles for Asia Series. International Center for Tropical Agriculture (CIAT), The World Bank. Washington DC: 28.
    Wisser D, Frolking S, Hagen S, et al. 2013. Beyond peak reservoir storage? A global estimate of declining water storage capacity in large reservoirs. Water Resources Research, 49(9): 5732−5739. DOI: 10.1002/wrcr.20452.
    Zakir-Hassan G. 2023. Improving sustainable groundwater management: A case study of managed aquifer recharge in Punjab Pakistan. PhD thesis, School of Agricultural, Environmental, and Veterinary Sciences, Charles Sturt University, Australia.
    Zakir-Hassan G, Akhtar S, Shabir G, et al. 2023. Water budget study for groundwater recharge in Indus River Basin, Punjab (Pakistan). H2Open Journal, 6(3): 449−462. DOI: 10.2166/h2oj.2023.027.
    Zakir-Hassan G, Hassan FR, Shabir G, et al. 2021. Impact of floods on groundwater—A case study of Chaj Doab in Indus Basin of Pakistan. International Journal of Food Science and Agriculture, 5(4): 639−653. DOI: 10.26855/ijfsa.2021.12.011.
    Zhongming Z, Linong L, Xiaona Y, et al. 2014. United Nations World Water Development Report 2014: Water and Energy, 1.
  • [1] Mouna Djellali, Omar Guefaïfia, Chemsedinne Fehdi, Adel Djellali, Amor Hamad2023:  Assessing the impact of artificial recharge on groundwater in an over-exploited aquifer: A case study in the Cheria Basin, North-East of Algeria, Journal of Groundwater Science and Engineering, 11, 263-277. doi: 10.26599/JGSE.2023.9280022
    [2] Ertekin Can, Ulugergerli Emin U2022:  Geoelectrical survey over perched aquifers in the northern part of Upper Sakarya River Basin, Türkiye, Journal of Groundwater Science and Engineering, 10, 335-352. doi: 10.19637/j.cnki.2305-7068.2022.04.003
    [3] Vinay Kumar Gautam, Mahesh Kothari, P.K. Singh, S.R. Bhakar, K.K. Yadav2022:  Analysis of groundwater level trend in Jakham River Basin of Southern Rajasthan, Journal of Groundwater Science and Engineering, 10, 1-9. doi: 10.19637/j.cnki.2305-7068.2022.01.001
    [4] Guo Jin-xing, Li Zhi-ping, Stefan Catalin2022:  Managed aquifer recharge (MAR) applications in China–achievements and challenges, Journal of Groundwater Science and Engineering, 10, 57-69. doi: 10.19637/j.cnki.2305-7068.2022.01.006
    [5] SONG Hong-wei, XIA Fan, MU Hai-dong, WANG Wei-qiang, SHANG Ming-sen2020:  Study on detecting spatial distribution availability in mine goafs by ultra-high density electrical method, Journal of Groundwater Science and Engineering, 8, 281-286. doi: 10.19637/j.cnki.2305-7068.2020.03.008
    [6] Fatima Zahra FAQIHI, Anasse BENSLIMANE, Abderrahim LAHRACH, Mohamed CHIBOUT, Mohamed EL MOKHTAR2020:  Recognition of the hydrogeological potential using electrical sounding in the KhemissetTiflet region, Morocco, Journal of Groundwater Science and Engineering, 8, 172-179. doi: 10.19637/j.cnki.2305-7068.2020.02.008
    [7] Abdelhakim LAHJOUJ, Abdellah EL HMAIDI, Karima BOUHAFA2020:  Spatial and statistical assessment of nitrate contamination in groundwater: Case of Sais Basin, Morocco, Journal of Groundwater Science and Engineering, 8, 143-157. doi: 10.19637/j.cnki.2305-7068.2020.02.006
    [8] Abdulrahman Th Mohammad, Qassem H Jalut, Nadia L Abbas2020:  Predicting groundwater level of wells in the Diyala River Basin in eastern Iraq using artificial neural network, Journal of Groundwater Science and Engineering, 8, 87-96. doi: 10.19637/j.cnki.2305-7068.2020.01.009
    [9] Qaisar Mehmood, Muhammad Arshad, Muhammad Rizwan, Shanawar Hamid, Waqas Mehmood, Muhammad Ansir Muneer, Muhammad Irfan, Lubna Anjum2020:  Integration of geoelectric and hydrochemical approaches for delineation of groundwater potential zones in alluvial aquifer, Journal of Groundwater Science and Engineering, 8, 366-380. doi: 10.19637/j.cnki.2305-7068.2020.04.007
    [10] Muhammad Nauman Malik, Mehdi Murtuza, Iqbal Asif, Bakar Muhammad Saifullah Abu, Brahim Aissa, Dk Nur Afiqah Jalwati Puteri, Amer Farhan Rafique2019:  Adaptive state estimation of groundwater contaminant boundary input flux in a 2-dimensional aquifer, Journal of Groundwater Science and Engineering, 7, 373-382. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.008
    [11] LI Bo, LI Xue-mei2018:  Characteristics of karst groundwater system in the northern basin of Laiyuan Spring area, Journal of Groundwater Science and Engineering, 6, 261-269. doi: 10.19637/j.cnki.2305-7068.2018.04.002
    [12] ZHOU Xun2017:  Arsenic distribution and source in groundwater of Yangtze River Delta economic region, China, Journal of Groundwater Science and Engineering, 5, 343-353.
    [13] Eunhee Lee, Kyoochul Ha, Nguyen Thi Minh Ngoc, Adichat Surinkum, Ramasamy Jayakumar, Yongje Kim, Kamaludin Bin Hassan2017:  Groundwater status and associated issues in the Mekong-Lancang River Basin: International collaborations to achieve sustainable groundwater resources, Journal of Groundwater Science and Engineering, 5, 1-13.
    [14] Than Zaw, Maung Maung Than2017:  Climate change and groundwater resources in Myanmar, Journal of Groundwater Science and Engineering, 5, 59-66.
    [15] Pezhman ROUDGARMI, Ebrahim FARAHANI2017:  Investigation of groundwater quantitative change, Tehran Province, Iran, Journal of Groundwater Science and Engineering, 5, 278-285.
    [16] ZHANG Xiang-yang, CHEN Zong-yu, YANG Guo-min, TU Le-yi, HU Shui-ming2016:  Krypton-85 dating of shallow aquifer in Hebei Plain, Journal of Groundwater Science and Engineering, 4, 328-332.
    [17] ZHANG Chun-chao, WANG Wen-Ke, SUN Yi-bo, LI Xiang-quan,HOU Xin-wei2015:  Processes of hydrogeochemical evolution of groundwater in the Guanzhong Basin, China, Journal of Groundwater Science and Engineering, 3, 136-146.
    [18] GONG Jian-shi, ZHU Chun-fang, YE Nian-jun, WANG He-sheng, ZHOU Kai-e, HOU Li-li2014:  Experimental study of impact of a certain polluted river on groundwater along river bank in Southeast China, Journal of Groundwater Science and Engineering, 2, 8-16.
    [19] Yan Zhang, Shuai Song, Jing Li, Fadong Li, Guangshuai Zhao, Qiang Liu2013:  Stable Isotope Composition of Rainfall, Surface Water and Groundwater along the Yellow River, Journal of Groundwater Science and Engineering, 1, 82-88.
    [20] Jingli Shao, Yali Cui, Yunzhang Zhao2013:  A Study on Infiltration and Groundwater Development in the Influent Zone of the Perched Lower Yellow River, Journal of Groundwater Science and Engineering, 1, 46-53.
  • 加载中
图(13) / 表ll (5)
计量
  • 文章访问数:  199
  • HTML全文浏览量:  73
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-14
  • 录用日期:  2024-08-21
  • 网络出版日期:  2024-12-06
  • 刊出日期:  2024-12-09

目录

    /

    返回文章
    返回