• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录


尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!


Evaluation of groundwater resource potential by using water balance model: A case of Upper Gilgel Gibe Watershed, Ethiopia

Abebe Wondmagegn Taye

Abebe WT. 2022. Evaluation of groundwater resource potential by using water balance model: A case of Upper Gilgel Gibe Watershed, Ethiopia. Journal of Groundwater Science and Engineering, 10(3): 209-222 doi:  10.19637/j.cnki.2305-7068.2022.03.001
Citation: Abebe WT. 2022. Evaluation of groundwater resource potential by using water balance model: A case of Upper Gilgel Gibe Watershed, Ethiopia. Journal of Groundwater Science and Engineering, 10(3): 209-222 doi:  10.19637/j.cnki.2305-7068.2022.03.001

doi: 10.19637/j.cnki.2305-7068.2022.03.001

Evaluation of groundwater resource potential by using water balance model: A case of Upper Gilgel Gibe Watershed, Ethiopia

More Information
    Corresponding author: wondmagegn.abebe@ju.edu.et
  • * The report is available in Ethiopia’s Ministry of Water Resources (MWR) library.
    • 关键词:
    •  / 
    •  / 
    •  / 
    * The report is available in Ethiopia’s Ministry of Water Resources (MWR) library.
  • Figure  1.  Location map of the study area

    Figure  2.  Elevation (a), soil map (b), land use and land cover map (c) and geology (d) of the study area

    (NMn = Very highly permeable volcanic sand; PNv1 = Lower felsic, volcanic, and sedimentary formation; PNv2 = Upper felsic volcanic; Q = Quaternary sediments)

    Figure  3.  Isohyetal map of the study area

    Figure  4.  Long term hydrograph of the Gilgel Gibe River with separated base flow

    Figure  5.  Location and types of wells collected

    Table  1.   Data collected, source and purpose

    No.Data collectedSources of dataPurpose
    1 Long term meteorological data (1985-2017) National meteorological service agency (NMSA) of Ethiopia To determine aerial depth of precipitation and potential evapotranspiration
    2 Hydrological data (1990-2013) Ministry of water, irrigation and energy office (MoWIE) For baseflow separation and to determine Runoff
    3 Digital elevation model (DEM) 30 m × 30 m resolution ftp://ftp.glcf.umd.edu/glcf/Landsat/WRS2/ server To yield essential derivative products such as slope, flow accumulation and flow direction in the process of watershed delineation
    4 Soil data Ministry of water, irrigation and energy office (MoWIE) and also food and agricultural organization (FAO) soil classification map was used in combination To determine available water capacity for different soil types and to determine actual evapotranspiration
    5 Land use land cover data Ministry of water, irrigation and energy office (MoWIE)
    6 Geology and hydrogeology
    7 Existing borehole data Jimma zone water, mineral, and energy office, well completion reports of Jimma University and Jimma airport, from previous study around the watershed and Jimma zone water, sanitation and hygiene (WASH) report To locate existing boreholes in the watershed and to determine groundwater abstraction
    下载: 导出CSV

    Table  2.   Mean monthly aerial depth of precipitation by isohyetal method

    No.Isohyets intervalMean isohyetal value, P1-2 (mm)The area between isohyets, A1-2 (km2)Col. 3 * Col. 4
    11 460-1 4801 4704.416 479.5
    21 480-1 5001 4905.678 453.5
    31 500-1 5201 5107.7911 763.0
    41 520-1 5401 53014.7322 531.2
    51 540-1 5601 55033.2951 597.8
    61 560-1 5801 57060.5695 078.1
    71 580-1 6001 59090.92144 558.6
    81 600-1 6201 610206.30332 137.0
    91 620-1 6401 630222.33362 394.6
    101 640-1 6601 650349.81577 190.4
    111 660-1 6801 6701 231.832 057 152.1
    121 680-1 7001 690313.83530 367.9
    131 700-1 7201 710152.26260 371.2
    141 720-1 7401 73092.11159 358.8
    151 740-1 7601 75053.2393 146.3
    161 760-1 7801 77036.0263 758.3
    171 780-1 8001 79026.2546 988.9
    181 800-1 8201 81020.4036 928.8
    191 820-1 8401 83018.3733 610.1
    Annual aerial depth of precipitation1 664.5 mm/a
    下载: 导出CSV

    Table  3.   PET of the study area according to modified Penman method

    T (°C)18.4319.0219.3818.9918.6517.8116.9117.2017.6017.6217.7317.67
    T (°F)65.1766.2466.8866.1765.5864.0662.4462.9663.6963.7163.9163.80
    ea (mm/d)15.916.416.916.416.115.314.414.715.
    RH (% )56.754.660.569.074.980.783.982.779.669.862.058.3
    ed (mm/d)9.018.9510.2311.3212.0612.3512.0912.1612.0310.549.428.81
    U2 (m/s)0.930.970.990.960.940.830.800.800.830.920.920.92
    n (hrs./d)
    N (hrs./d)11.711.912.012.212.412.512.412.312.111.911.511.7
    Ra (mm/d)13.2514.1614.9015.0814.7314.4514.5714.8314.8214.4013.4712.95
    RI(1-r) (mm/d)5.495.855.935.605.514.863.954.255.055.735.865.65
    αTa4 (mm/d)14.5214.6214.6914.6214.5514.4012.2414.3014.3714.3714.3914.38
    Ro (mm/d)2.402.422.191.911.851.611.091.351.662.112.462.54
    PET (mm/d)2.873.173.303.082.932.512.152.212.612.942.942.81
    PET (mm/month)89.0189.78102.3892.4290.9475.3166.5868.4778.4491.1588.3287.08
    PET (mm/a)1019.89
    下载: 导出CSV

    Table  4.   Available water capacity of root zone and area coverage of soil types

    Soil typeAerial coverage (km2)The area in (%)
    Chromic vertisols and dystric nitosols157153.4
    Dystric fluvisols44515.1
    Eutric Fluvisols70023.8
    Eutric nitosols130.5
    Orthic arcisols2127.2
    下载: 导出CSV

    Table  5.   Adjusted WTRBLN for the whole study area

    ParametersMonthsAnnual (mm/a)
    Peff - PET−60.0−54.7−16.364.2106.4158.9191.6183.193.91.1−46.6−59.9561.4
    $ \Delta $Sm−27.5−18.1−4.464.−40.8−38.60.0
    Notes: P = Mean monthly aerial depth of precipitation, DRO = Direct runoff, Peff = Effective rainfall, PET = Potential evapotranspiration, AccPWL = Accumulated potential water loss, Sm = Soil moisture, $ \Delta $Sm = change in soil moisture, AET = Actual evapotranspiration, SMD = Soil moisture deficit, S = Surplus, TARO = Total available water for runoff, RO = Runoff without direct runoff, DET = Detention, and ROTL = Runoff including direct runoff. All values are in mm.
    下载: 导出CSV

    Table  6.   Mean monthly discharge of Gilgel Gibe near Assendabo river

    DischargeRecording period (1990-2013)
    (×106 m3)24.5718.5619.3125.5854.96117.1223.7311.3267.2159.677.3839.121338.44
    下载: 导出CSV

    Table  7.   Estimated water balance components of the study area

    ComponentsRecharge (m3/a)Specific yield (%)Exploitable groundwater reserve (m3/a)Safe yield (m3/a)Abstraction (m3/a)
    Estimated values875 829 8005.9520 557 000522 768 34910 154 684
    下载: 导出CSV

    Table  8.   Summary of methods used and results obtained by different studies

    Study areaMethodResultsReference
    Omo GibeBaseflow separationBaseflow volume = 2 785 million m3WAPCOS, (Moges, 2012)
    Omo GibeSub-surface drainage approachAnnual groundwater recharge = 3 329 million m3WAPCOS
    Omo GibeRecharge area approachAnnual replenishable recharge = 4 208 million m3WAPCOS
    Omo Gibe3D steady-state Finite Element Method based groundwater modeling code (TAGSAC)The groundwater resource potential = 4.38 billion m3(Gedamu, 2015)
    Bulbul sub-basinWater balance methodThe groundwater recharge = 178 067 792 m3(Shimelis, Megerssa and Fantahun, 2014)
    下载: 导出CSV
  • Abu-zeid M, Shiklomanov IA. 2003. Water resources as a challenge of the twenty-first century. World Meteorological Organization (WMO): 1–152. ISBN: 9263109699.
    Adem S. 2012. Groundwater resource evaluation and sustainable management in Adelle-Haromaya Dry Lake Catchment, Eastern Ethiopia. Addis Ababa University: 1–106.
    Awulachew SB. et al. 2007. Water resources and irrigation development in Ethiopia. Colombo, Sri Lanka: International Water Management Institute: 1–82 (Working paper 123).
    Bashe BB. 2017. Groundwater potential mapping using remote sensing and GIS in Rift Valley Lakes Basin, Weito Sub Basin, Ethiopia. International Journal of Scientific & Engineering Research, 8(2) : 1-8.
    Bedient PB, Huber WC, Vieux BE. 2013. Hydrology and floodplain analysis. 5th edn. Pearson Education Limited: 1-816. ISBN: 9780132567961.
    Chaemiso SE, Abebe A, Pingale SM. 2016. Assessment of the impact of climate change on surface hydrological processes using SWAT: A case study of Omo-Gibe river basin, Ethiopia. Modeling Earth Systems and Environment. Springer International Publishing, 2(4): 1–15.
    Chinnasamy P. 2018. Estimation of specific yield using water table fluctuations and cropped area in a hardrock aquifer system of Rajasthan, India. Agricultural Water Management. Elsevier, 202: 146–155.
    CSA. 2007. Summary and statistical report of the 2007 population and housing census. Addis Ababa: 1–113.
    Emerson DG, Vecchia AV, Dahl AL. 2005. Evaluation of drainage-area ratio method used to estimate streamflow for the Red River of the North Basin. North Dakota and Minnesota Scientific Investigations Report: 1–18.
    Gedamu BH. 2015. Characterizing the ground water resources potential in Omo Gibe River Basin. Addis Ababa University, Addis Ababa Institute of Technology: 1–124.
    Ghandhari A, Alavi Moghaddam SMR. 2011. Water balance principles: A review of studies on five watersheds in Iran. Journal of Environmental Science and Technology: 465–479.
    Gintamo TT. 2015. Ground water potential evaluation based on integrated GIS and remote sensing techniques, in Bilate River Catchment : South Rift Valley of Ethiopia. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 10: 85–120.
    Gregor BM. 2010. Bfi+ 3.0 User’s Manual. Hydrooffice Software Package: 1–21.
    Hendrayana H. et al. 2021. Thornthwaite and mather water balance method in Indonesian tropical area. IOP Conference Series: Earth and Environmental Science, 851(1).
    Karamouz M, Ahmadi A, Akhbari M. 2011. Groundwater hydrology: Engineering, planning, and management. CRC Press Taylor & Francis Group: 1-662. ISBN: 9781439891216.
    Kassahun N, Mohamed M. 2018. Groundwater potential assessment and characterization of Genale-Dawa River Basin. Open Journal of Modern Hydrology, 8: 126–144.
    Kovalevsky VS, Kruseman GP, Rushton KR. (eds). 2004. Groundwater studies an international guide for hydrogeological investigations. United Nations Educational, Scientific and Cultural Organization: 1–430. ISBN: 9292200054.
    Kumar CP. 2012. Assessment of groundwater potential. The International Journal of Engineering and Science (IJES), 1(1): 64–79.
    Moges S. 2012. Water solutions project case study agricultural use of ground water in Ethiopia: Assessment of potential and analysis of economics, policies, constraints and opportunities: 1–49.
    Raghunath HM. 2006. Hydrology: Principles analysis design. Revis. 2nd. New Age International (P) Ltd. Publishers: 1–477. ISBN: 9788122423327.
    Rwebugisa RA. 2008. Groundwater recharge assessment in the Makutupora Basin, Dodoma Tanzania. International Institute for Geo-information Science and Earth Observation Enschede. The Netherlands: 1–111.
    Saxton KE, Rawls WJ. 2006. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America, 1578: 1569–1578.
    Shaw EM. et al. 2010. Hydrology in practice. 4th Ed. Spon Press: 1–558. ISBN: 9780415370417.
    Shimelis A, Megerssa O, Fantahun A. 2014. Estimation of groundwater recharge using water balance model coupled with base flow separation in Bulbul River catchment of Gilgel-Gibe River Basin, Ethiopia. Asian Journal of Applied Science and Engineering, 3(2): 235–243.
    Tizro TA, Voudouris KS, Eini M. 2007. Groundwater balance, safe yield and recharge feasibility in a semi-arid environment: A case study from western part of Iran. Journal of Applied Sciences, 7(20): 2967–2976.
    Villholth KG. 2006. Groundwater assessment and management: Implications and opportunities of globalization. Springer, Hydrogeology Journal, 14: 330–339.
    Voudouris KSÃ. 2006. Groundwater balance and safe yield of the coastal aquifer system in NEastern Korinthia, Greece. Elsevier, Applied Geography, 26: 291–311.
    WHO. 2006. Protecting groundwater for health. IWA Publishing, World Health Organization: 1–175. ISBN: 9781843390794.
    WWAP. 2015. The United Nations world water development report 2015: Water for a sustainable world. Paris, UNESCO and UN-Water: 1–139. ISBN: 9789231000713.
  • [1] Guo Jin-xing, Li Zhi-ping, Stefan Catalin2022:  Managed aquifer recharge (MAR) applications in China–achievements and challenges, Journal of Groundwater Science and Engineering, 10, 57-69. doi: 10.19637/j.cnki.2305-7068.2022.01.006
    [2] Nasiri Shima, Ansari Hossein, Ziaei Ali Naghi2022:  Determination of water balance equation components in irrigated agricultural watersheds using SWAT and MODFLOW models : A case study of Samalqan plain in Iran, Journal of Groundwater Science and Engineering, 10, 44-56. doi: 10.19637/j.cnki.2305-7068.2022.01.005
    [3] Gautam Vinay Kumar, Kothari Mahesh, Singh P.K., Bhakar S.R., Yadav K.K.2022:  Analysis of groundwater level trend in Jakham River Basin of Southern Rajasthan, Journal of Groundwater Science and Engineering, 10, 1-9. doi: 10.19637/j.cnki.2305-7068.2022.01.001
    [4] Shahbaz Akhtar M, Nakashima Yoshitaka, Nishigaki Makoto2021:  Clogging mechanisms and preventive measures in artificial recharge systems, Journal of Groundwater Science and Engineering, 9, 181-201. doi: 10.19637/j.cnki.2305-7068.2021.03.002
    [5] Mehdi Afraz, Mobin Eftekhari, Mohammad Akbari, Elyasi Ali Haji, Zahra Noghani2021:  Application assessment of GRACE and CHIRPS data in the Google Earth Engine to investigate their relation with groundwater resource changes (Northwestern region of Iran), Journal of Groundwater Science and Engineering, 9, 102-113. doi: 10.19637/j.cnki.2305-7068.2021.02.002
    [6] Zhang Han, Chen Zong-yu, Tang Chang-yuan2021:  Quantifying groundwater recharge and discharge for the middle reach of Heihe River of China using isotope mass balance method, Journal of Groundwater Science and Engineering, 9, 225-232. doi: 10.19637/j.cnki.2305-7068.2021.03.005
    [7] Muhammad Juandi2020:  Water sustainability model for estimation of groundwater availability in Kemuning district, Riau-Indonesia, Journal of Groundwater Science and Engineering, 8, 20-29. doi: 10.19637/j.cnki.2305-7068.2020.01.003
    [8] Qaisar Mehmood, Muhammad Arshad, Muhammad Rizwan, Shanawar Hamid, Waqas Mehmood, Muhammad Ansir Muneer, Muhammad Irfan, Lubna Anjum2020:  Integration of geoelectric and hydrochemical approaches for delineation of groundwater potential zones in alluvial aquifer, Journal of Groundwater Science and Engineering, 8, 366-380. doi: 10.19637/j.cnki.2305-7068.2020.04.007
    [9] Dinagarapandi Pandi, Saravanan Kothandaraman, Mohan Kuppusamy2020:  Delineation of potential groundwater zones based on multicriteria decision making technique, Journal of Groundwater Science and Engineering, 8, 180-194. doi: 10.19637/j.cnki.2305-7068.2020.02.009
    [10] Yacob T Tesfaldet, Avirut Puttiwongrak, Tanwa Arpornthip2020:  Spatial and temporal variation of groundwater recharge in shallow aquifer in the Thepkasattri of Phuket, Thailand, Journal of Groundwater Science and Engineering, 8, 10-19. doi: 10.19637/j.cnki.2305-7068.2020.01.002
    [11] SADIKI Moulay Lhassan, EL MANSOURI Bouabid, BENSEDDIK Badr, CHAO Jamal, KILI Malika, EL MEZOUARY Lhoussaine2019:  Improvement of groundwater resources potential by artificial recharge technique: A case study of Charf El Akab aquifer in the Tangier region, Morocco, Journal of Groundwater Science and Engineering, 7, 224-236. doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.003
    [12] LIU Yu, CHENG Yan-pei, GE Li-qiang2018:  Analysis on exploitation status, potential and strategy of groundwater resources in the five countries of Central Asia, Journal of Groundwater Science and Engineering, 6, 49-57. doi: 10.19637/j.cnki.2305-7068.2018.01.006
    [13] SONG Chao, HAN Gui-lin, WANG Pan, SHI Ying-chun, HE Ze2017:  Hydrochemical and isotope characteristics of spring water discharging from Qiushe Loess Section in Lingtai, northwestern China and their implication to groundwater recharge, Journal of Groundwater Science and Engineering, 5, 364-373.
    [14] Eunhee Lee, Kyoochul Ha, Nguyen Thi Minh Ngoc, Adichat Surinkum, Ramasamy Jayakumar, Yongje Kim, Kamaludin Bin Hassan2017:  Groundwater status and associated issues in the Mekong-Lancang River Basin: International collaborations to achieve sustainable groundwater resources, Journal of Groundwater Science and Engineering, 5, 1-13.
    [15] NAN Tian, SHAO Jing-li, CUI Ya-li2016:  Column test-based features analysis of clogging in artificial recharge of groundwater in Beijing, Journal of Groundwater Science and Engineering, 4, 88-95.
    [16] XIA Ri-yuan2016:  Groundwater resources in karst area in Southern China and sustainable utilization pattern, Journal of Groundwater Science and Engineering, 4, 301-309.
    [17] GAO Zong-jun, ZHU Zhen-hui, LIU Xiao-di, XU Yan-lan2014:  The Formation and Model of High Fluoride Groundwater and In-situ Dispelling Fluoride Assumption in Gaomi City of Shandong Province, Journal of Groundwater Science and Engineering, 2, 34-39.
    [18] LI Yu, CUI Yu, SUN Ying, LI Zhi-ping, WANG Xin-juan, WANG Li-ya, YANG Qing, WANG Rong2014:  Sustainable utilization measures of groundwater resources in Beijing, Journal of Groundwater Science and Engineering, 2, 60-66.
    [19] Jiankang Zhang, Yanpei Cheng, Hua Dong, Qingshi Guo, Kun Liu, Fawang Zhang2013:  Study on Ecological Environment and Sustainable Land Use Based on Satellite Remote Sensing, Journal of Groundwater Science and Engineering, 1, 89-96.
    [20] Jiansheng Shi, Hongtao Liu, Zhiyuan Liu, Tieliu Chen2013:  Application of the “Accurate Control Groundwater Resources” Theory in Containment of Groundwater Resource Exhaustion Trend, Journal of Groundwater Science and Engineering, 1, 1-10.
  • 加载中
图(5) / 表ll (8)
  • 文章访问数:  423
  • HTML全文浏览量:  182
  • PDF下载量:  72
  • 被引次数: 0
  • 收稿日期:  2021-12-08
  • 录用日期:  2022-06-20
  • 刊出日期:  2022-09-15