• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录


尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!


Multivariate analysis and geochemical investigations of groundwater in a semi-arid region, case of superficial aquifer in Ghriss Basin, Northwest Algeria

Benadela Laouni Bekkoussa Belkacem Gaidi Laouni

Benadela L, Bekkoussa B, Gaidi L. 2022. Multivariate analysis and geochemical investigations of groundwater in a semi-arid region, case of superficial aquifer in Ghriss Basin, Northwest Algeria. Journal of Groundwater Science and Engineering, 10(3): 233-249 doi:  10.19637/j.cnki.2305-7068.2022.03.003
Citation: Benadela L, Bekkoussa B, Gaidi L. 2022. Multivariate analysis and geochemical investigations of groundwater in a semi-arid region, case of superficial aquifer in Ghriss Basin, Northwest Algeria. Journal of Groundwater Science and Engineering, 10(3): 233-249 doi:  10.19637/j.cnki.2305-7068.2022.03.003

doi: 10.19637/j.cnki.2305-7068.2022.03.003

Multivariate analysis and geochemical investigations of groundwater in a semi-arid region, case of superficial aquifer in Ghriss Basin, Northwest Algeria

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
  • Figure  1.  Geological and piezometric map of the study area and groundwater samples location (Adapted from Sourisseau, 1972)

    Figure  2.  Lithologic correlation of borehole logs from the study area (Bekkoussa, 2009)

    Figure  3.  Piper diagram of water and chemical facies

    Figure  4.  Factor scores (33 samples) of F1 and F2

    Figure  5.  Distribution map of factor scores a) F1 and b) F2

    Figure  6.  Gibbs plots illustrating main mechanisms impacting groundwater composition in the superficial aquifer in Ghriss plain

    Figure  7.  Relationships between major ions

    Figure  8.  Bivariate plots of (a) (Ca2+ /Na2+) vs (Mg2+/Na2+) and (b) (Ca2+ /Na2+) vs (HCO3 /Na2+)

    Figure  9.  Plots of (a) Cl/Na+ versus NO3/Na+ and (b) NO3/Na+ versus SO42−/Na+

    Table  1.   Lithostratigraphic units in the study area

    Stratigraphic unitLithology (thickness)
    QuaternaryAlluvium (less than 100 m)
    PlioceneAstien sandstone and lacustrine limestones (40 m to 270 m). More clayed in upper part.
    MioceneGreen marl (up to 400 m)
    OligoceneClay-marly formations with sandstone passages (less than 100 m)
    EoceneAlternation of sandstone and clay-marly layers (less than 50 m)
    Lower CretaceousSandstone, limestones, and fine clayey sandstone at depth (up to 100 m)
    Jurassic (Kimmeridgian and Purbeckian)Graylimestones and dolomitic limestones (more than 400 m)
    LusitanoSandstone and dolomitic benches (more than 150 m)
    Callovo- OxfordianClays and marls with alternating sandstone (more than 250 m)
    TriasDetritic formations and lagoon deposits rich in gypsum and halite
    下载: 导出CSV

    Table  2.   Physicochemical parameters of groundwater samples

    P148120396263416446598.5126001 980
    P2871903224839235399187.7930902 700
    P4602223314819242399207.7531302 700
    P61082594232126134421367.4340403 680
    P7871852855845190293117.8828902 500
    P94072154427399253117.6713501 080
    P108758255432026635357.8814861 260
    P11100622308402121279608.0518001 500
    P1216493182960090213728.322201 700
    P1312047138429395319558.2214031 100
    下载: 导出CSV

    Table  3.   Statistical summary of chemical parameters of groundwater samples (Units in mg/L, except EC (μs/cm))

    VariableWHO standardsAlgerian standardsValues in the aquifer of Ghriss basin
    MinMaxAverageSt. Dev.
    下载: 导出CSV

    Table  4.   Pearson correlation matrix of major physicochemical parameters in groundwater

    Variables Ca2+ Mg2+ Na+ K+ Cl SO42− HCO3 NO3 PH EC
    Ca2+ 1.00
    Mg2+ 0.05 1.00
    Na+ 0.26 0.77 1.00
    K+ 0.36 0.07 0,27 1.00
    Cl 0.42 0.86 0.92 0.26 1.00
    SO42− 0.08 0.73 0.74 0.05 0.69 1.00
    HCO3 −0.18 0.07 0.05 −0.10 −0.15 −0.01 1.00
    NO3 0.54 −0.10 0.10 0.70 0.17 −0.14 −0.34 1.00
    PH 0.18 −0.12 0.25 0.09 0.15 0.01 −0.29 0.38 1.00
    EC 0.41 0.86 0.94 0.28 0.99 0.71 −0.07 0.19 0.17 1.00
    NB: Values in bold correspond for coefficients greater than 0.5.
    下载: 导出CSV

    Table  5.   Principal component loadings and eigenvalues of the factor analysis

    F1 F2 F3
    Ca2+ 0.418 0.583 −0.192
    Mg2+ 0.843 −0.412 −0.052
    Na+ 0.940 −0.116 0.033
    K+ 0.346 0.627 −0.506
    Cl 0.979 −0.036 0.044
    SO42− 0.768 −0.365 0.100
    HCO3 −0.103 −0.485 −0.593
    NO3 0.239 0.886 −0.163
    PH 0.197 0.485 0.633
    EC 0.988 −0.045 0.001
    Eigenvalues 4.52 2.31 1.09
    Explained variance (%) 45.22 23.09 10.88
    Cumulative % of variance 45.22 68.31 79.19
    下载: 导出CSV
  • Abou Zakhem B. 2016. Using principal component analysis (PCA) in the investigation of aquifer storage and recovery (ASR) in Damascus Basin (Syria). Environmental Earth Sciences, 75(15).
    Abou Zakhem B, Al-Charideh A, Kattaa B. 2017. Using principal component analysis in the investigation of groundwater hydrochemistry of Upper Jezireh Basin, Syria. Hydrological Sciences Journal, 62(14) .
    Alley WM, Healy RW, Labaugh JW, et al. 2002. Flow and storage in groundwater systems. Science, 296 (5575): 1985–1990.
    Assens G, Besbes M, De Marsily G. 1977. Hydrogeological study of the plain of mascara on mathematical model. National School of Mines of Paris, Geological Computer Center, Paris.
    Avci H, Dokuz UE, Avci AS. 2018. Hydrochemistry and groundwater quality in a semiarid calcareous area: An evaluation of major ion chemistry using a stoichiometric approach. Environ Monit Assess, 190: 641. doi:  10.1007/s10661-018-7021-8
    Ayouba A, Guel B. 2015. Physicochemical characterization of the groundwater of the locality of Yamtenga (Burkina Faso). International Journal of Biological and Chemical Sciences, 9(1): 517−533. doi:  10.4314/ijbcs.v9i1.44
    Baba-hamed K, Bouanani A, Nasri A, et al. 2015. Modeling of the alluvial aquifer of the Ghriss plain (nw-Algerian mascara). Larhyss Journal, 21: 133−140.
    Bekkoussa B. 2009. Modeling the transfer and propagation of nitrates in the groundwater of the Ghriss Plain. Ph. D. Thesis. University of Oran Algeria: 155.
    Bekkoussa B, Jourde H, Batiot-Guilhe C, et al. 2013. Origin of the salinity and the main major elements of the water table of the Ghriss plain, North-West Algeria. Hydrological Sciences Journal, 58(5): 1111−1127. doi:  10.1080/02626667.2013.800639
    Bekkoussa S, Bekkoussa B, Taupin J-D, et al. 2018. Groundwater hydrochemical characterization and quality assessment in the Ghriss Plain basin, northwest Algeria. Journal of Water Supply:Research and Technology-Aqua, 67(5): 458−466. doi:  10.2166/aqua.2018.013
    Benadela L, Bekkoussa B. 2017. Application of multivariate statistical analysis methods to the study of the mineralization of aquifer system waters the plain of ghriss (North West algeria). Larhyss Journal: 29.
    Benadela L, Gaïdi L, Bekkoussa B. 2018. Influence of lithology and climatic conditions on the evolution of the physico-chemical parameters of the waters of the aquifer system of the Ghriss plain (North-West Algeria). International Journal of Water and Environmental Sciences and Technology: III−1.
    Benadela L, Bekkoussa B, Abbes M, et al. 2019. Temporal evolutionof groundwater chemistry in the GHRISS plain (Northwest Algeria). Second International Symposium (WREIANA 2019) Water Resources and Environmental Impact Assessment in North Africa.
    Benfetta H, Remini B, Leduc C. 2008. Study of groundwater fluctuations in the Ghriss Mascara plain – Algeria. BALWOIS-Ohrid Republic of Macedonia -27: 31.
    Besser H, Hamed Y. 2019. Causes and risk evaluation of oil and brine contamination in the lower cretaceous continental intercalaire aquifer in the Kebili region of southern Tunisia using chemical fingerprinting techniques. Environment Pollution, 253 : 412-423.
    Bharti VK, Giri A, Kumar K. 2017. Evaluation of physico-chemical parameters and minerals status of different water sources at high altitude. Annals of Environmental Science and Toxicology, 2(1): 010−018.
    Boateng TK, Opoku F, Acquaah SO, et al. 2016. Groundwater quality assessment using statistical approach and water quality index in Ejisu-Juaben Municipality, Ghana. Environmental Earth Sciences: 489.
    Chen S, Tang Z, Wang J, et al. 2020. Multivariate analysis and geochemical signatures of shallow groundwater in the main urban area of Chongqing. Southwestern China Water, 12, 2833.
    Chibane B, Bentchakal M, medjerab A, et al. 2015. Study of the variability and structure of annual rainfall in a semi-arid region: Case of the Macta watershed (north-western Algeria). Larhyss Journal: 213-229.
    Dahmani A. 2010. Impact of climate change on water resources in the watershed of oued fekan wilaya of Mascara. Ph. D. Thesis. University of Oran Algeria: 104.
    Dugga P, Pervez S, Tripathi M, et al. 2020. Spatiotemporal variability and source apportionment of the ionic components of groundwater of a mineral-rich tribal belt in Bastar, India. Groundwater for Sustainable Development, 10: 100356.
    Esmaeili S, Moghaddam A, Barzegar R, et al. 2018. Multivariate statistics and hydrogeochemical modeling for source identification of major elements and heavy metals in the groundwater of Qareh-Ziaeddin plain, NW Iran. Arabian Journal of Geosciences, 11: 5. doi:  10.1007/s12517-017-3317-1
    Fan B-L, Zhao Z-Q, Tao F-X, et al. 2014. Characteristics of carbonate, evaporite and silicate weathering in Huanghe River basin: A comparison among the upstream, midstream and downstream. Journal of Asian Earth Sciences, 96: 17−26. doi:  10.1016/j.jseaes.2014.09.005
    Fatoba JO, Sanuade OA, Hammed OS. 2017. The use of multivariate statistical analysis in the assessment of groundwater hydrochemistry in some parts of southwestern Nigeria. Arab J. Geosci, 10: 328. doi:  10.1007/s12517-017-3125-7
    García GM, Hidalgo MDV, Blesa MA. 2001. Geochemistry of groundwater in the alluvial plain of tucum_an province, argentina. Hydrogeology Journal, 9(6): 597e610.
    Gholizadeh MH, Melesse AM, Reddi L. 2016. Water quality assessment and apportionment of pollution sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida. Science Total Environment, 566: 1552−1567. doi:  10.1016/j.scitotenv.2016.06.046
    Güler C, Thyne GD, McCray JE, et al. 2002. Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeology Journal, 10: 455−474. doi:  10.1007/s10040-002-0196-6
    Hadji R, Achour Y, Hamed Y. 2017. Using GIS and RS for slope movement susceptibility mapping: Comparing AHP, LI and LR methods for the Oued Mellah Basin, NE Algeria. In: Kallel A, Ksibi M, Ben Dhia H, Khélifi N. (eds) Recent advances in environmental science from the Euro-Mediterranean and surrounding regions. EMCEI 2017. Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development). Springer, Cham.
    Haj-Amor Z, Hashemi H, Bouri S. 2018. The consequences of saline irrigation treatments on soil physicochemical characteristics. Euro-Mediterranean Journal for Environmental Integration, 3: 22. doi:  10.1007/s41207-018-0064-y
    Hamad A, Baali F, Hadji R, et al. 2018. Hydrogeochemical characterization of water mineralization in Tebessa-Kasserine karst system (Tuniso-Algerian Transboundry basin). Euro-Mediterranean Journal for Environmental Integration, 3: 7. doi:  10.1007/s41207-017-0045-6
    Hamed Y. 2013. The hydrogeochemical characterization of groundwater in Gafsa-Sidi Boubaker region (Southwestern Tunisia). Arabian Journal of Geosciences, 6(3): 697−710. doi:  10.1007/s12517-011-0393-5
    Hamed Y, Ahmadi R, Hadji R, et al. 2014a. Groundwater evolution of the continental intercalaire aquifer of Southern Tunisia and a part of Southern Algeria: Use of geochemical and isotopic indicators. Desalination and Water Treatment, 52(10-12): 1990–1996.
    Hamed Y, Ahmadi R, Demdoum A, et al. 2014b. Use of geochemical, isotopic, and age tracer data to develop models of groundwater flow: A case study of Gafsa mining basin-Southern, Tunisia. Journal of African Earth Sciences, 100: 418−436. doi:  10.1016/j.jafrearsci.2014.07.012
    Ismail AH, Hassan G, Sarhan A. 2020. Hydrochemistry of shallow groundwater and its assessment for drinking and irrigation purposes in Tarmiah district, Baghdad governorate, Iraq. Groundwater for Sustainable Development, 10: 100300. doi:  10.1016/j.gsd.2019.100300
    Jampani M, Liedl R, Hülsmann S, et al. 2020. Hydrogeochemical and mixing processes controlling groundwater chemistry in a wastewater irrigated agricultural system of India. Chemosphere, 239: 124741. doi:  10.1016/j.chemosphere.2019.124741
    Jia H, Howard K, Qian H. 2020. Use of multiple isotopic and chemical tracers to identify sources of nitrate in shallow groundwaters along the northern slope of the Qinling Mountains, China. Applied Geochemistry, 113: 104512. doi:  10.1016/j.apgeochem.2019.104512
    Kaiser HF. 1960. The application of electronic computers to factor analysis. Educ Psychol Meas, 20: 141−151. doi:  10.1177/001316446002000116
    Khan N, Malik A, Nehra K. 2021. Groundwater hydro-geochemistry, quality, microbiology and human health risk assessment in semi-arid area of Rajasthan, India: A chemometric approach. Environmental Monitoring and Assessment, 193: 234.
    Khatri N, Tyagi S. 2015. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Frontiers in Life Science, 8: 1, 23−39. doi:  10.1080/21553769.2014.933716
    Kou Y, Li Z, Hua K. 2019. Hydrochemical characteristics, controlling factors, and solute sources of streamflow and groundwater in the Hei River Catchment, China. Water, 11: 2293. doi:  10.3390/w11112293
    Kouassi AM, Mamadou A, Kouassi EA, et al. 2013. Simulation of the electrical conductivity of water underground in relation to their geological properties: Case of the Coast Ivory. Revue Isee Sci. Technol, 21-22: 138−166.
    Krupp RE. 2005. Formation and chemical evolution of magnesium chloride brines by evaporite dissolution processes — implications for evaporite geochemistry. Geochimica et Cosmochimica Acta, 69(17): 4283−4299. doi:  10.1016/j.gca.2004.11.018
    Li P, Wu J, Qian H. 2016. Hydrochemical appraisal of groundwater quality for drinking and irrigation purposes and the major influencing factors: A case study in and around Hua County, China. Arabian Journal of Geosciences.
    Liu F, Zhao Z, Yang L, et al. 2020. Geochemical characterization of shallow groundwater using multivariate statistical analysis and geochemical modeling in an irrigated region along the upper Yellow River, Northwestern China. Journal of Geochemical Exploration, 215: 106565. doi:  10.1016/j.gexplo.2020.106565
    Liu J, Peng Y, Li C, et al. 2021a. An investigation into the hydrochemistry, quality and risk to human health of groundwater in the central region of Shandong Province, North China. Journal of Cleaner Production, 282: 12541.
    Liu J, Peng Y, Li C, et al. 2021b. Characterization of the hydrochemistry of water resources of the Weibei Plain, Northern China, as well as an assessment of the risk of high groundwater nitrate levels to human health. Environmental Pollution, 268: 115947. doi:  10.1016/j.envpol.2020.115947
    Loni OA, Zaidi FK, Alhumimidi MS, et al. 2014. Evaluation of groundwater quality in an evaporation dominant arid environment; a case study from Al Asyah area in Saudi Arabia. Arabian Journal of Geosciences.
    Ma B, Jin M, Liang X, et al. 2017. Groundwater mixing and mineralization processes in a mountain–oasis–desert basin, northwest China: Hydrogeochemistry and environmental tracer indicators. Hydrogeology Journal: 1–18.
    Makhlouf A. 2015. Waste input-output analysis: Life cycle analysis of fertilizers produced in algeria. Ph. D. Thesis. Annaba University Algeria: 156.
    Masoud AA. 2014. Groundwater quality assessment of the shallow aquifers west of the Nile Delta (Egypt) using multivariate statistical and geostatistical techniques. Journal of African Earth Sciences, 95: 123−137. doi:  10.1016/j.jafrearsci.2014.03.006
    Matari A, Douguedroit A. 1995. Chronology of rainfall and drought in western Algeria. Strategies for the control of drought. 9th Asian-African Regional Conference on Irrigation and Drainage Algiers: 266–278.
    McLean W, Jankowski J, Lavitt N. 2000. Groundwater quality and sustainability in an alluvial aquifer, Australia. Groundwater, Past Achievements and Future Challenges. A Balkema, Rotterdam: 567-573.
    Meddi H, Meddi M. 2009. Variability of annual precipitation in North-West Algeria. Sécheresse Journal, 20(1): 57−65.
    M’nassri S, Dridi L, Schäfer G, et al. 2019. Groundwater salinity in a semi-arid region of central-eastern Tunisia: Insights from multivariate statistical techniques and geostatistical modelling. Environmental Earth Sciences, 78: 288. doi:  10.1007/s12665-019-8270-8
    Mokadem N, Redhaounia B, Besser H, et al. 2018. Impact of climate change on groundwater and the extinction of ancient “Foggara” and springs systems in arid lands in North Africa: A case study in Gafsa basin (Central of Tunisia). Euro-Mediterranean Journal for Environmental Integration, 3: 28. doi:  10.1007/s41207-018-0070-0
    Ncibi K, Chaar H, Baccari N, et al. 2019a. Factor weighting in generic DRASTIC model for vulnerability mapping: Comparing SPSA and PLS techniques for semi-arid region in Central Tunisia. 2nd International Symposium of Water Resources and Environmental Impact Assessment in North Africa (WREIANA 2019), March 25 – 27, Sousse, Tunisia.
    Ncibi K, Gherissi R, Melki A, et al. 2019b. Natural recharge evaluation of the aquifer system using global hydrologic modeling: Application in the Sidi Bouzid basin (Central Tunisia). 2nd International Symposium of Water Resources and Environmental Impact Assessment in North Africa (WREIANA 2019), March 25 – 27, Sousse, Tunisia.
    Nguyen BT, Nguyen MT, Bach QV. 2020. Assessment of groundwater quality based on principal component analysis and pollution source-based examination: A case study in Ho Chi Minh City, Vietnam. Environmental Monitoring and Assessment, 192: 395. doi:  10.1007/s10661-020-08331-0
    NHRA. 2010. Climate change and its impact on water resources in Algeria. National Water Conference. National Agency of Hydraulic Resources Algiers: 41.
    Niu B, Wang H, Loaiciga H, et al. 2017. Temporal variations of groundwater quality in the Western Jianghan Plain, China. Science of the Total Environment, 578: 542−550. doi:  10.1016/j.scitotenv.2016.10.225
    Ojo-Awo NA, Agbabiaka HI, Ilesanmi AO. 2018. Refuse dumpsite and its associated pollutants: Spatial variations of the impact of leachates on groundwater quality. Management of Environmental Quality. An International Journal, 29(3): 572−591. doi:  10.1108/MEQ-08-2017-0077
    Ouis S. 2012. Impact of climatic fluctuations on and the quality of groundwater in a semi-arid region such as the Ghriss plain (North-West Algeria). Larhyss Journal: 119-131.
    Owoyemi FB, Oteze GE, Omonona OV. 2019. Spatial patterns, geochemical evolution and quality of groundwater in Delta State, Niger Delta, Nigeria: Implication for groundwater management. Environmental Monitoring and Assessment, 191: 617. doi:  10.1007/s10661-019-7788-2
    Raju NJ, Ram P, Dey S. 2009. Groundwater quality in the lower varuna river basin, varanasi district, Uttar Pradesh. J. Geol. Soc. India, 73(2): 178−192. doi:  10.1007/s12594-009-0074-0
    Rodier J. 2009. Water Analysis (9th edition) Ed. Dunod : Paris.
    Ruiz-Pico A, Pérez-Cuenca A, Serrano-Agila R, et al. 2019: Hydrochemical characterization of groundwater in the Loja Basin (Ecuador). Applied Geochemistry, 104: 1–9.
    Singh CK, Kumar A, Shashtri S, et al. 2017. Multivariate statistical analysis and geochemical modeling for geochemical assessment of groundwater of Delhi, India. Journal Geochemical Exploration, 175: 59−71. doi:  10.1016/j.gexplo.2017.01.001
    Sourisseau B. 1972. Hydrogeological study of the plain of Ghriss. Report National Agency of Water Resources, ed Algiers, Algeria.
    Swift Bird K, Navarre-Sitchler A, Singha K. 2020. Hydrogeological controls of arsenic and uranium dissolution into groundwater of the Pine Ridge Reservation, South Dakota. Applied Geochemistry, 114: 104522. doi:  10.1016/j.apgeochem.2020.104522
    Tamma Rao G, Srinivasa Rao Y, Mahesh J, et al. 2015. Hydrochemical assessment of groundwater in alluvial aquifer region, Jalandhar District, Punjab, India. Environment Earth Science, 73: 8145−8153. doi:  10.1007/s12665-014-3973-3
    Toumi N, Hussein BH, Rafrafi S, et al. 2015. Groundwater quality and hydrochemical properties of Al-Ula Region, Saudi Arabia. Environmental Monitoring and Assessment, 187(3): 84. doi:  10.1007/s10661-014-4241-4
    Trabelsi R, Zouari K. 2019. Coupled geochemical modeling and multivariate statistical analysis approach for the assessment of groundwater quality in irrigated areas: A study from North Eastern of Tunisia. Groundwater for Sustainable Development, 8: 413−427. doi:  10.1016/j.gsd.2019.01.006
    Troudi N, Hamzaoui-Azaza F, Tzoraki O, et al. 2020. Assessment of groundwater quality for drinking purpose with special emphasis on salinity and nitrate contamination in the shallow aquifer of Guenniche (Northern Tunisia). Environmental Monitoring and Assessment, 192: 641. doi:  10.1007/s10661-020-08584-9
    Wang R, Bian JM, Gao Y. 2014. Research on hydrochemical spatio-temporal characteristics of groundwater quality of different aquifer systems in songhua river basin, eastern songnen plain, northeast china. Arabian Journal of Geosciences, 7(12): 5081−5092. doi:  10.1007/s12517-014-1324-z
    Wang Z, Gao Z, Wang S, et al. 2021. Hydrochemistry characters and hydrochemical processes under the impact of anthropogenic activity in the Yiyuan city, Northern China. Environmental Earth Sciences, 80: 60. doi:  10.1007/s12665-020-09361-0
    Yang Q, Wang L, Ma H, et al. 2016. Hydrochemical characterization and pollution sources identification of groundwater in Salawusu aquifer system of Ordos Basin, China. Environmental Pollution, 216: 340−349. doi:  10.1016/j.envpol.2016.05.076
    Zaidi FK, Mogren S, Mukhopadhyay M, et al. 2016. Evaluation of groundwater chemistry and its impact on drinking and irrigation water quality in the eastern part of the Central Arabian graben and trough system, Saudi Arabia. Journal of African Earth Sciences, 120: 208−219. doi:  10.1016/j.jafrearsci.2016.05.012
    Zhang Y, Xu M, Li X, et al. 2018. Hydrochemical characteristics and multivariate statistical analysis of natural water system: A case study in Kangding County, Southwestern China. Water, 10: 80. doi:  10.3390/w10010080
  • [1] Zhang Han, Chen Zong-yu, Tang Chang-yuan2022:  Tracing runoff components in the headwater area of Heihe River by isotopes and hydrochemistry, Journal of Groundwater Science and Engineering, 10, 405-412. doi: 10.19637/j.cnki.2305-7068.2022.04.008
    [2] Bahrami Mehdi, Khaksar Elmira, Khaksar Elahe2020:  Spatial variation assessment of groundwater quality using multivariate statistical analysis(Case Study: Fasa Plain, Iran), Journal of Groundwater Science and Engineering, 8, 230-243. doi: 10.19637/j.cnki.2305-7068.2020.03.004
    [3] Abdelhakim LAHJOUJ, Abdellah EL HMAIDI, Karima BOUHAFA2020:  Spatial and statistical assessment of nitrate contamination in groundwater: Case of Sais Basin, Morocco, Journal of Groundwater Science and Engineering, 8, 143-157. doi: 10.19637/j.cnki.2305-7068.2020.02.006
    [4] YANG Hai-jun, DONG Jian-xing, SUN Dong, HUANG Rui2019:  Characteristics of shallow geothermal fields in major cities of Tibet Autonomous Region, Journal of Groundwater Science and Engineering, 7, 77-85.
    [5] WEN Xue-ru, CHENG Yan-pei, DONG Hua, WANG Chun-xiao, ZHANG Er-yong, LIU Kun2019:  Interpretation for technical requirements of mapping regional groundwater resources, Journal of Groundwater Science and Engineering, 7, 288-294. doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.009
    [6] BELOUANAS Hemza, MENANI Mohamed Redha2019:  Characterization of Continental Intercalaire aquifer (CI) in the Tinrhert-East Area-Illizi Basin on the Algerian-Libyan Border, Journal of Groundwater Science and Engineering, 7, 115-132.
    [7] SOSI Benjamin, BARONGO Justus, GETABU Albert, MAOBE Samson2019:  Electrical-hydraulic conductivity model for a weathered-fractured aquifer system of Olbanita, Lower Baringo Basin, Kenya Rift, Journal of Groundwater Science and Engineering, 7, 360-372. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.007
    [8] A Muthamilselvan, N Rajasekaran, R Suresh2019:  Mapping of hard rock aquifer system and artificial recharge zonation through remote sensing and GIS approach in parts of Perambalur District of Tamil Nadu, India, Journal of Groundwater Science and Engineering, 7, 264-281. doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.007
    [9] Nouayti Abderrahime, Khattach Driss, Hilali Mohamed, Nouayti Nordine2019:  Mapping potential areas for groundwater storage in the High Guir Basin (Morocco):Contribution of remote sensing and geographic information system, Journal of Groundwater Science and Engineering, 7, 309-322. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.002
    [10] SHU Qin-feng, WEI Liang-shuai, LI Xiao2019:  Geological characteristics and analysis of hydrothermal genesis in the Suijiang-1 well in Yunnan Province, China, Journal of Groundwater Science and Engineering, 7, 53-60.
    [11] TAO Hong, ZHENG Miao-miao, FAN Li-min, LI Wen-li, DING Jia, LI Hui, HE Xu-bo, TAO Fu-ping2017:  Research on quality changes and influencing factors of groundwater in the Guanzhong Basin, Journal of Groundwater Science and Engineering, 5, 296-302.
    [12] SONG Chao, HAN Gui-lin, WANG Pan, SHI Ying-chun, HE Ze2017:  Hydrochemical and isotope characteristics of spring water discharging from Qiushe Loess Section in Lingtai, northwestern China and their implication to groundwater recharge, Journal of Groundwater Science and Engineering, 5, 364-373.
    [13] WANG Hong-ke, GUO Jiao, SHI Ying-chun2015:  Type of major water hazards and study of countermeasures in Shennan Mining Area, Journal of Groundwater Science and Engineering, 3, 70-76.
    [14] ZHANG Fa-wang, CHENG Yan-pei2015:  Progress on the mapping of groundwater resources and environment in Asia, Journal of Groundwater Science and Engineering, 3, 105-117.
    [15] DONG Hua, GE Li-qiang2015:  Groundwater ecological environment and the mapping of Asia, Journal of Groundwater Science and Engineering, 3, 118-126.
    [16] CUI Qiu-ping, LIU Zhi-gang, LIU Li-jun, ZHANG Shao-cai, CHEN Yun-qian2014:  Emergency water supply capacity analysis of major cities in Hebei, Journal of Groundwater Science and Engineering, 2, 76-86.
    [17] Chang-li LIU, Chao SONG, Hong-bing HOU, Xiu-yan WANG, Yun ZHANG, Jun-kun WANG, Jian-mei JIANG, Li-xin PEI, Bo SONG2014:  The Impact of Human Activities on CO2 Intake by Carbonate Weathering: A Case Study of Conglin Karst Ridge-trough at Fuling Town, Chongqing, China, Journal of Groundwater Science and Engineering, 2, 29-38.
    [18] LIU Kai, SUN Ying,  LI Yu, LIU Jiu-rong, LIU Ying-chao2014:  Zonation for exploitation and utilization of geothermal water in Beijing, Journal of Groundwater Science and Engineering, 2, 94-104.
    [19] Feng-long Zhang, Fu-li Qi, Shou-cheng Lu, Yong-li Li2013:  Analysis of the Water Factor with the Major Environmental Issues in the Sanjiang Plain, Journal of Groundwater Science and Engineering, 1, 28-32.
    [20] Zai-sheng Han, Jayakunar Ramasamy, Yao Li, Jing He, HaoWang, Yan-pei Cheng, Hua Dong, Zeng-shi Ni2013:  Asian Transboundary Aquifers Inventory and Mapping, Journal of Groundwater Science and Engineering, 1, 1-9.
  • 加载中
图(9) / 表ll (5)
  • 文章访问数:  214
  • HTML全文浏览量:  81
  • PDF下载量:  44
  • 被引次数: 0
  • 收稿日期:  2021-08-06
  • 录用日期:  2022-05-23
  • 刊出日期:  2022-09-15