• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录


尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!


Development status and prospect of underground thermal energy storage technology

Ying-nan Zhang Yan-guang Liu Kai Bian Guo-qiang Zhou Xin Wang Mei-hua Wei

Zhang YN, Liu YG, Bian K, et al. 2024. Development status and prospect of underground thermal energy storage technology. Journal of Groundwater Science and Engineering, 12(1): 92-108 doi:  10.26599/JGSE.2024.9280008
Citation: Zhang YN, Liu YG, Bian K, et al. 2024. Development status and prospect of underground thermal energy storage technology. Journal of Groundwater Science and Engineering, 12(1): 92-108 doi:  10.26599/JGSE.2024.9280008

doi: 10.26599/JGSE.2024.9280008

Development status and prospect of underground thermal energy storage technology

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
  • Figure  1.  Schematic representation of the most common UTES systems. Adapted from (Lee, 2013; Matos et al. 2019)

    Figure  2.  Schematic diagram of BTES system: (a) boreholes distribution plan view; (b) single borehole configuration (Zhang et al. 2012)

    Figure  3.  HWTES system (Xu et al. 2014)

    Figure  4.  GWTES system (Pfeil and Koch, 2000)

    Table  1.   International application cases of ATES

    YearCountryPurposeFacilityWell depth (m)Well numberTemperature (°C)Capacity (MW)Reference
    2000GermanyH+CBuilding3201219/Holstenkamp et al. 2017
    2001SwedenH+CExpo architecture7510/1.3Andersson, 2007
    2004GermanyHTDistrict heating1,2502553.3Holstenkamp et al. 2017
    2008AmericaCUniversity606/2Paksoy, 2009
    2013ChinaH+CResearch Center//2.3/Yao et al. 2023
    2013BritainH+CApartments708/2.9Fleuchaus et al. 2018
    2015NetherlandH+CDistrict heating/7/20Fleuchaus et al. 2018
    2015DenmarkH+CAirport11010/5Larsen and Sonderberg, 2015
    2016ChinaH+Cfactory/2/43Zhang et al. 2021b
    Note: H is Heat; C is Cool.
    下载: 导出CSV

    Table  2.   Application cases of BTES system technology worldwide

    YearCountryPurposeFacilityNumber of pipesDepth (m)Reference
    2004CanadaH+CUniversity384213Dincer and Rosen, 2007
    2007GermanyHschool8055Mangold, 2007
    2011ChinaH+CCommercial center3,789120Yin and Wu, 2018
    2012DenmarkHDistrict heating4845Gehlin, 2016
    2015RomaniaH+CResearch center1,080125Gehlin, 2016
    2016ChinaH+CDistrict heating46880Xu et al. 2018
    2019ChinaH+CAirport10,680140/120He et al. 2022
    2020ChinaH+CHospital1,320120Wang et al. 2023
    Note: H is Heat; C is Cool.
    下载: 导出CSV

    Table  3.   Comparison of thermal energy storage systems (Rad and Fung, 2016; Schmidt et al. 2003)

    Storage medium Ground material/water Ground material Gravel-water Water
    Heat capacity
    (kW h/m3)
    30–40 15–30 30–50 60–80
    Storage volume for (1 m3 of water equivalent) 2–3 3–5 1.3–2 1
    Geological requirement · Natural aquifer layer with high hydraulic conductivity;
    · Confining layers on top and below;
    · No or low natural groundwater flow;
    · Suitable water chemistry at high temperatures;
    · Aquifer thickness 20–50 m
    · Drillable ground;
    · Groundwater favorable;
    · High heat capacity;
    · High thermal conductivity;
    · Low hydraulic conductivity;
    · Natural groundwater flow <1 m/s;
    · 30–100 m deep
    · Stable ground conditions;
    · Preferably no groundwater;
    · 5–15 m deep
    下载: 导出CSV

    Table  4.   Common numerical simulation software for UTES and its characteristics (Gao et al. 2017)

    CodeNumerical schemeCharacteristic and application conditions
    VS2DH Finite difference 2-D;constant density fluid; variably saturated porous media; single phase fluid flow
    FEHM Control volume finite element 3-D;for multiphase flow of heat and mass with air, water, and CO2
    MT3DMS Finite difference 3-D;always coupled with MODFLOW; simulating heat transport due to the analogy between heat and mass transfer processes
    FEFLOW Finite element 3-D; able to incorporate spatially variable aquifer properties, geologic layering, and screening of pumping/injection wells over multiple intervals
    TOUGH2 Integral finite differences 3-D;variably saturated porous and fractured media; coupled transport of water, vapor, noncondensable gas, and heat
    FLUENT Finite volume 3-D;useful in fluid flow, heat transfer, chemical reaction etc.
    COMSOL Finite element 3-D;multiphysics; different module
    下载: 导出CSV

    Table  5.   Energy conservation and emission reduction indicators (Zhou et al. 2022)

    Energy conservation Cumulative cooling load per unit air conditioning area $ {Q}_{c}={a}_{c}{q}_{c}{t}_{c} $ Kwh/m2
    Cumulative heat load per unit air conditioning area $ {Q}_{h}={a}_{h}{q}_{h}{t}_{h} $ Kwh/m2
    The modified cumulative cooling load of the building $ {Q}_{r}=\dfrac{(1-1/{\varepsilon }_{h})}{(1+1/{\varepsilon }_{c})}{Q}_{h} $ Kwh/m2
    Energy savings during the cooling season $ \Delta {\mathrm{E}}_{\mathrm{c}}=\mathrm{D}{\mathrm{Q}}_{\mathrm{r}}\left(\dfrac{1}{{\mathrm{\varepsilon }}_{\mathrm{t}}}-\dfrac{1}{{\mathrm{\varepsilon }}_{\mathrm{c}}}\right) $ kgce/m2
    Energy savings during the heating season $ \Delta {\mathrm{E}}_{\mathrm{h}}=\dfrac{3,600{\mathrm{Q}}_{\mathrm{h}}}{{\mathrm{q}}_{\mathrm{b}\mathrm{m}}{\mathrm{\eta }}_{\mathrm{t}}}-\dfrac{\mathrm{D}{\mathrm{Q}}_{\mathrm{h}}}{{\mathrm{\epsilon }}_{\mathrm{h}}} $ kgce/m2
    Annual energy savings $ \Delta \mathrm{E}=\Delta {\mathrm{E}}_{\mathrm{c}}+\Delta {\mathrm{E}}_{\mathrm{h}} $ kgce/m2
    Annual electricity savings $ \Delta \mathrm{P}=\dfrac{\Delta \mathrm{E}}{\mathrm{D}} $ Kwh/m2
    Emission reduction CO2 emission reduction $ {Q}_{{CO}_{2}}={Q}_{s}\times {V}_{{CO}_{2}} $ t/a
    SO2 emission reduction $ {Q}_{{SO}_{2}}={Q}_{s}\times {V}_{{SO}_{2}} $ t/a
    Dust emission reduction $ {Q}_{fc}={Q}_{s}\times {V}_{fc} $ t/a
    Note : $ {a}_{c} $ and $ {a}_{h} $ are the adjustment coefficients of cooling load and heating load respectively, and they are both 0.52; $ {q}_{c} $ and $ {q}_{h} $ are the cooling load in summer and heating load in winter respectively, W/m; $ {t}_{c} $ and $ {t}_{h} $ are the operating time of cooling in summer and heating in winter respectively, h; $ {\epsilon }_{c} $ and $ {\epsilon }_{h} $ are the energy efficiency ratio of refrigeration and heating of underground energy storage system; $ {\mathrm{\epsilon }}_{\mathrm{t}} $ is the energy efficiency ratio of conventional air conditioning refrigeration; $ {\mathrm{\eta }}_{\mathrm{t}} $ is the operating efficiency of coal-fired boilers; $ {\mathrm{q}}_{\mathrm{b}\mathrm{m}} $ is the calorific value of standard coal, taking 29,307 kJ /kg; D is equivalent to the consumption of standard coal per kwh, 0.327 kgce/kwh; $ {Q}_{s} $ is conventional energy replacement quantity, tce/a; $ {V}_{{CO}_{2}} $, $ {V}_{{SO}_{2}} $ and $ {V}_{fc} $ are the emission intensity of CO2, SO2 and dust respectively, which are 2.47 t/tce, 0.02 t/tce and 0.01 t/tce, respectively. 2; The buried tube heat exchanger is designed for heating conditions in winter, and auxiliary cold source is used for peak regulation in summer, so that the heat extraction to the underground in winter and the heat storage to the underground in summer are basically balanced. Therefore, when calculating energy saving, the summer load is modified based on the winter load to ensure the balance of heat absorption and emission in winter and summer.
    下载: 导出CSV
  • Andersson O. 2007. BO 01 ATES system for heating and cooling in Malmö. In: Thermal Energy Storage for Sustainable Energy Consumption: Fundamentals, Case Studies and Design. Dordrecht: Springer Press: 235-238.
    Brun G. 1965. La régularisation de l'énergie solaire par stockage thermique dans le sol. Revue Général de Thermique, August (44).
    Casasso A, Giordano N, Bianco C, et al. 2022. UTES - underground thermal energy storage. Encyclopedia of Energy Storage: 382−393.
    Catolico N, Ge SM, McCartney JS. 2016. Numerical modeling of a soil-borehole thermal energy storage system. Vadose Zone Journal, 15(1): 1−17. DOI: 10.2136/vzj2015.05.0078.
    Cetin A, Kadioglu YK, Paksoy H. 2020. Underground thermal heat storage and ground source heat pump activities in Turkey. Solar Energy, 200: 22−28. DOI: 10.1016/j.solener.2018.12.055.
    Chen M. 2012. Research on ATES key-technology in Shanghai. M. S. thesis. Changchun: Jilin University: 26-35. (in Chinese)
    Chen SRL. 2019. Thermal characteristics study of seasonal borehole thermal energy storage (BTES)system under different operating modes. ph. D. thesis. Tianjin: Tianjin University: 1-30. (in Chinese)
    Ciampi G, Rosato A, Sibilio S. 2018. Thermo-economic sensitivity analysis by dynamic simulations of a small Italian solar district heating system with a seasonal borehole thermal energy storage. Energy, 143: 757−771. DOI: 10.1016/j.energy.2017.11.029.
    Coenen L, Raven R, Verbong G. 2010. Local niche experimentation in energy transitions: A theoretical and empirical exploration of proximity advantages and disadvantages. Technology in Society, 32(4): 295−302. DOI: 10.1016/j.techsoc.2010.10.006.
    Deng S, Shen X, Liu L, et al. 2021. Researh progress in corrosion and protection of geothermal well system. Materials Reports, 35(21): 21178−21184. (in Chinese) DOI: 10.11896/cldb.20050245.
    Diao NR, Cui P, Gao CM, et al. 2013. Thermal investigation of in-series vertical ground heat exchangers for seasonal heat storage. Journal of Shandong Jianzhu University, 28(06): 503−508+513. (in Chinese)
    Dincer I, Rosen M. 2007. A unique borehole thermal storage system at University of Ontario Institute of Technology. In: Thermal Energy Storage for Sustainable Energy Consumption: Fundamentals, Case Studies and Design. NATO Science Series. Springer, Dordrecht, 234: 221-228.
    Du XQ, Ye XY, Lu Y, et al. 2009. Advances in clogging research of artificial recharge. Advances in Earth Science, 24(09): 973−980. (in Chinese)
    Ebrahimi K, Jones GF, Fleischer AS. 2014. A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities. Renewable and Sustainable Energy Reviews, 31: 622−638. DOI: 10.1016/j.rser.2013.12.007.
    Feng B, Ke ZG, Liu YG, et al. 2022. Plugging mechanism and plugging removal technologies for enhanced geothermal system reservoirs. Natural Gas Industry, 42(12): 165−183. (in Chinese) DOI: 10.3787/j.issn.1000-0976.2022.12.017.
    Fleuchaus P, Godschalk B, Stober I, et al. 2018. Worldwide application of aquifer thermal energy storage–A review. Renewable and Sustainable Energy Reviews, 94: 861−876. DOI: 10.1016/j.rser.2018.06.057.
    Gao LH, Zhao J, An QS, et al. 2017. A review on system performance studies of aquifer thermal energy storage. Energy Procedia, 142: 3537−3545. DOI: 10.1016/j.egypro.2017.12.242.
    Gao LH, Zhao J, Tang ZP. 2015. A review on borehole seasonal solar thermal energy storage. Energy Procedia, 70: 209−218. DOI: 10.1016/j.egypro.2015.02.117.
    Gehlin S. 2016. Borehole thermal energy storage. Advances in Ground-Source Heat Pump Systems. Amsterdam: 295−327.
    Gluyas JG, Adams CA, Wilson IAG. 2020. The theoretical potential for large-scale underground thermal energy storage (UTES) within the UK. Energy Reports, 6: 229−237. DOI: 10.1016/j.egyr.2020.12.006.
    Guan QL. 2009. Pump with seasonal storage by TRNSYS study on solar-ground coupled heat. M. S. thesis. Tianjin: Tianjin University: 82-84. (in Chinese)
    Han CJ, Yu X. 2016. Sensitivity analysis of a vertical geothermal heat pump system. Applied Energy, 170: 148−160. DOI: 10.1016/j.apenergy.2016.02.085.
    He JC, Bie S, Yi W, et al. 2022. Application of ground-source heat pump systems to Beijing Daxing International Airpport. Heating Ventilating & Air Conditioning, 52(05): 90−95. (in Chinese) DOI: 10.19991/j.hvac1971.2022.05.20.
    Holstenkamp L, Meisel M, Neidig P, et al. 2017. Interdisciplinary review of medium-deep aquifer thermal energy storage in North Germany. Energy Procedia, 135: 327−336. DOI: 10.1016/j.egypro.2017.09.524.
    Huang W. 2012. Research of corrosion prevention technology for injection-production system in Chaheji Oil Field. M. S. thesis. Qingdao: China University of Petroleum (East China): 1-6. (in Chinese)
    Huang YH, Pang ZH, Cheng YZ, et al. 2020. The development and outlook of the deep aquifer thermal energy storage (deep-ATES). Earth Science Frontiers, 27(01): 17−24. (in Chinese) DOI: 10.13745/j.esf.2020.1.3.
    IEA. 2022. Renewable energy market update - May 2022. International Energy Agency. Available on https://www.iea.org/reports/renewable-energy-market-update-may-2022.
    IRENA, IEA, REN21. 2018. Renewable energy policies in a time of transition. International Energy Agency. Available on https://www.iea.org/reports/renewable-energy-policies-in-a-time-of-transition.
    Kabus F, Seibt P. 2000. Aquifer thermal energy storage for the Berlin Reichstag building-new seat of the german parliament. In: World Geothermal Congress. Kyushu-Tohoku, Japan: 3611−3615.
    Kallesøe AJ, Vangkilde-Pedersen T, Guglielmetti L. 2020. HEATSTORE—underground thermal energy storage (UTES)—state of the art, example cases and lessons learned. Proceedings World Geothermal Congress: 1-9.
    Kemler EN. 1946. Heat-pump heat sources. Edison Electric Institute (EEI) Bulletin, October: 339−346.
    Kemler EN. 1947. Methods of earth heat recovery for the heat pump. Heating and Ventilating, September: 69−72.
    Kılkış Ş, Wang C, Björk F, et al. 2017. Cleaner energy scenarios for building clusters in campus areas based on the Rational Exergy Management Model. Journal of Cleaner Production, 155: 72−82. DOI: 10.1016/j.jclepro.2016.10.126.
    Kim J, Lee Y, Yoon WS, et al. 2010. Numerical modeling of aquifer thermal energy storage system. Energy, 35(12): 4955−4965. DOI: 10.1016/j.energy.2010.08.029.
    Larsen H, Sonderberg P. 2015. DTU International Energy Report: Energy Systems Integration for the Transition to Non-Fossil Energy Systems. Technical University of Denmark.
    Lee KS. 2013. Underground Thermal Energy Storage. London: Springer Press: 15-26.
    Li HL, Kang J, Tong J, et al. 2021. State-of-art on Clogging Mechanism of Geothermal tall-water Reinjection. In: 2021 Science and Technology Annual Conference of Chinese Society of Environmental Sciences — Environmental Engineering Technology Innovation and Application Branch Venue. Tianjin: 782-790. (in Chinese)
    Li HR, Hou J, Hong TZ, et al. 2021. Energy, economic, and environmental analysis of integration of thermal energy storage into district heating systems using waste heat from data centres. Energy, 219: 119582. DOI: 10.1016/j.energy.2020.119582.
    Li XG, Zhao J, Wang YP, et al. 2009. The application and experiment of solar-ground coupled heat pump with heat storage. Acta Energiae Solaris Sinica, 30(12): 1658−1661. (in Chinese)
    Lian HK, Li Y, Shu GY, et al. 2011. An overview of domestic technologies for waste heat utilization. Energy Conservation Technology, 29(02): 123−128, 133. (in Chinese)
    Liang B. 2022. Thermal performance of a spiral-type ground heat exchanger with coupled thermal and moisture migration mechanism in unsaturated sandy soil. ph. D. thesis. Beijing: Beijing Jiaotong University: 8-11. (in Chinese)
    Liu GQ, Wu SQ, Fan ZW, et al. 2016. Analytical derivation on recharge and periodic backwashing process and the variation of recharge pressure. Journal of Jilin University (Earth Science Edition), 46(06): 1799−1807. (in Chinese) DOI: 10.13278/j.cnki.jjuese.201606203.
    Liu HG, Yang CH, Liu JJ, et al. 2023. An overview of underground energy storage in porous media and development in China. Gas Science and Engineering, 117: 1−15. DOI: 10.1016/j.jgsce.2023.205079.
    Long X, Wan MY, Ma J. 2005a. The application of ATES and its condition for energy storage. Energy Engineering, (01): 42−44. (in Chinese) DOI: 10.16189/j.cnki.nygc.2005.01.010.
    Long X, Wan MY, Ma J. 2005b. Research on ATES mathematical model and its flowing condition. Energy Research & Utilization, (01): 14−18. (in Chinese)
    Mangold D. 2007. Seasonal storage-a German success story. Sun& Wind Energy: 48-58.
    Mathey B. 1977. Development and resorption of a thermal disturbance in a phreatic aquifer with natural convection. Journal of Hydrology, 34(3-4): 315−333. DOI: 10.1016/0022-1694(77)90139-1.
    Matos CR, Carneiro JF, Silva PP. 2019. Overview of large-scale underground energy storage technologies for integration of renewable energies and criteria for reservoir identification. Journal of Energy Storage, 21: 241−258. DOI: 10.1016/j.est.2018.11.023.
    Mays DC, Hunt JR. 2007. Hydrodynamic and chemical factors in clogging by montmorillonite in porous media. Environmental Science Technology, 41(16): 5666−5671. DOI: 10.1021/es062009s.
    Molz FJ, Melville JG, Güven O, et al. 1983. Aquifer thermal energy storage: An attempt to counter free thermal convection. Water Resources Research, 19(4): 922−930. DOI: 10.1029/wr019i004p00922.
    Molz FJ, Melville JG, Parr AD, et al. 1983. Aquifer thermal energy storage: A well doublet experiment at increased temperatures. Water Resources Research, 19(1): 149−160. DOI: 10.1029/wr019i001p00149.
    Molz FJ, Parr AD, Andersen PF, et al. 1979. Thermal energy storage in a confined aquifer: Experimental results. Water Resources Research, 15(6): 1509−1514. DOI: 10.1029/wr015i006p01509.
    Molz FJ, Warman JC, Jones TE. 1978. Aquifer storage of heated water: Part I — a field experiment. Groundwater, 16(4): 234−241. DOI: 10.1111/j.1745-6584.1978.tb03230.x.
    Morofsky E. 1994. ATES-energy efficiency, economics, and the environment. In:International Symposium on Aquifer Thermal Energy Storage. Tuscaloosa, Alabama,USA: 1−8.
    NEA. 2023. Renewable energy statistics in China. National Energy Administration. Available on https://www.gov.cn/xinwen/2023-02/14/content_5741481.htm.
    Ni L, Rong L, Ma ZL. 2007. The history and future of Aquifer Thermal Energy Storage. Building Energy & Environment, (01): 18−24. (in Chinese)
    Nordell B. 2013. Underground thermal energy storage (UTES). In: The 12th International Conference on Energy Storage. 1-10.
    Paksoy H. 2009. State-of-the-art review of aquifer thermal energy storage systems for heating and cooling buildings. Proceedings of Thermal Energy Storage for Efficiency and Sustainability, Effstock.
    Pfeil M, Koch H. 2000. High performance–low cost seasonal gravel/water storage pit. Solar Energy, 69(6): 461−467. DOI: 10.1016/S0038-092X(00)00123-7.
    Pramanik S, Ravikrishna RV. 2017. A review of concentrated solar power hybrid technologies. Applied Thermal Engineering, 127: 602−637. DOI: 10.1016/j.applthermaleng.2017.08.038.
    Rad FM, Fung AS. 2016. Solar community heating and cooling system with borehole thermal energy storage — Review of systems. Renewable and Sustainable Energy Reviews, 60: 1550−1561. DOI: 10.1016/j.rser.2016.03.025.
    Regnier G, Salinas P, Jacquemyn C, et al. 2022. Numerical simulation of aquifer thermal energy storage using surface-based geologic modelling and dynamic mesh optimisation. Hydrogeology Journal, 30(4): 1179−1198. DOI: 10.1007/s10040-022-02481-w.
    Renaldi R, Friedrich D. 2019. Techno-economic analysis of a solar district heating system with seasonal thermal storage in the UK. Applied Energy, 236: 388−400. DOI: 10.1016/j.apenergy.2018.11.030.
    Schmidt T, Mangold D, Müller-Steinhagen H. 2003. Seasonal thermal energy storage in Germany. In: ISES solar world congress: 230-232.
    Sibbitt B, Mcclenahan D, Djebbar R, et al. 2012. The performance of a high solar fraction seasonal storage district heating system — five years of operation. Energy Procedia, 30: 856−865. DOI: 10.1016/j.egypro.2012.11.097.
    Siriwardene N, Deletic A, Fletcher T. 2007. Clogging of stormwater gravel infiltration systems and filters: Insights from a laboratory study. Water Research, 41(7): 1433−1440. DOI: 10.1016/j.watres.2006.12.040.
    Socaciu LG. 2012. Seasonal thermal energy storage concepts. Acta Technic Napocensis-Series: Applied Mathematics, Mechanics, Engineering, 55(4): 775-784.
    Stemmle R, Lee H, Blum P, et al. 2024. City-scale heating and cooling with aquifer thermal energy storage (ATES). Geothermal Energy, 12(1): 2. DOI: 10.1186/s40517-023-00279-x.
    Wang GL, Yang X, Ma L, et al. 2021. Status quo and prospects of geothermal energy in heat supply. Integrated Intelligent Energy, 43(11): 15−24. (in Chinese) DOI: 10.3969/j.issn.1674-1951.2021.11.003.
    Wang MY, Ma J, Hao ZL. 2005. Choice and arrangement of aquifer thermal energy storage well's position. Journal of Chengdu University of Technology (Science & Technology Edition), 32(01): 12−16. (in Chinese)
    Wang S, Ding YR, Liu LY, et al. 2023. Design and initial operation analysis of buried pipe ground-source heat pump air conditioning system for a three-star green hospital. Heating Ventilating & Air Conditioning, 53(04): 76−83. (in Chinese) DOI: 10.19991/j.hvac1971.2023.04.13.
    Wang ZY, Xu YJ, Zhou XZ, et al. 2020. Storage and release characteristics of seasonal composite thermal storage system. Energy Storage Science and Technology, 9(6): 1837−1846. (in Chinese) DOI: 10.19799/j.cnki.2095-4239.2020.0101.
    Wang ZY, Zhou XZ, Xu YJ, et al. 2021b. Research on thermal diffusion mechanism of underground seasonal composite thermal storage system. Journal of Engineering Thermophysics, 42(08): 1917−1924. (in Chinese) DOI:0253-231X (2021) 08-1917-08.
    Wesselink M, Liu W, Koornneef J, et al. 2018. Conceptual market potential framework of high temperature aquifer thermal energy storage—A case study in the Netherlands. Energy, 147: 477−489. DOI: 10.1016/j.energy.2018.01.072.
    Wu XB. 2004. Development of ground water loop for ATES and ground water source heat pump systems. Heating Ventilating and Air Conditioning, 34(01): 19−22. (in Chinese) DOI: 10.3969/j.issn.1002-8501.2004.01.006.
    Wu XB, Ma J. 1999. ATES technology in China and its development. Energy Research and Information, 15: 8−12. (in Chinese) DOI: 10.13259/j.cnki.eri.1999.04.003.
    Xia JQ, Tian H, Dou B, et al. 2023. Experimental Review: Particle clogging in porous sandstone geothermal reservoirs during tail water reinjection. Journal of Hydrology, 625: 130066. DOI: 10.1016/j.jhydrol.2023.130066.
    Xu J, Wang RZ, Li Y. 2014. A review of available technologies for seasonal thermal energy storage. Solar Energy, 103: 610−638. DOI: 10.1016/j.solener.2013.06.006.
    Xu LY, Torrens JI, Guo F, et al. 2018. Application of large underground seasonal thermal energy storage in district heating system: A model-based energy performance assessment of a pilot system in Chifeng, China. Applied Thermal Engineering, 137: 319−328. DOI: 10.1016/j.applthermaleng.2018.03.047.
    Xue YQ, Xie CH, Li QF. 1990. Aquifer thermal energy storage: A numerical simulation of field experiments in China. Water Resources Research, 26(10): 2365−2375. DOI: 10.1029/WR026i010p02365.
    Yang TR, Liu W, Kramer GJ, et al. 2021. Seasonal thermal energy storage: A techno-economic literature review. Renewable and Sustainable Energy Reviews, 139: 110732. DOI: 10.1016/j.rser.2021.110732.
    Yang WB, Zhang Y, Wang F, et al. 2023. Experimental and numerical investigations on operation characteristics of seasonal borehole underground thermal energy storage. Renewable Energy, 217: 119365. DOI: 10.1016/j.renene.2023.119365.
    Yao Y, Gong YL, Ye CT, et al. 2023. New progress in application of innovative geothermal utilization technology in the Yangtze River Delta. Science & Technology Review, 41(12): 33−45. (in Chinese) DOI: 10.3981/j.issn.1000-7857.2023.12.005.
    Yin BQ, Wu XT. 2018. Performance analysis on a large scale borehole ground source heat pump in Tianjin cultural centre. IOP Conference Series: Earth and Environmental Science, 121: 052071. DOI: 10.1088/1755-1315/121/5/052071.
    Yin WL. 2022. Analysis of the regional energy mode in hot summer and cold winter areas — taking the regional energy project of Hefei Binhu Science City as an Example. Intelligent Building & Smart City, 07: 79−81. (in Chinese) DOI: 10.13655/j.cnki.ibci.2022.07.024.
    Yuan RQ, Zhang Y, Long XT. 2022. Deep groundwater circulation in a syncline in Rucheng County, China. Journal of Hydrology, 610: 127824. DOI: 10.1016/j.jhydrol.2022.127824.
    Zhang CG, Long XT, Tang XW, et al. 2021. Implementation of water treatment processes to optimize the water saving in chemically enhanced oil recovery and hydraulic fracturing methods. Energy Reports, 7: 1720−1727. DOI: 10.1016/j.egyr.2021.03.027.
    Zhang H. 2021. Study on characteristics of seasonal borehole thermal energy storage system. M. S. thesis. Beijing: North China Electric Power University: 1-7. (in Chinese)
    Zhang L, Geng SH, Chao JH, et al. 2022. Scaling and blockage risk in geothermal reinjection wellbore: Experiment assessment and model prediction based on scaling deposition kinetics. Journal of Petroleum Science and Engineering, 209: 109867. DOI: 10.1016/j.petrol.2021.109867.
    Zhang P. 2022. Study on dynamic evolution mechanism of deep thermal reservoir fractures under multi field coupling. Ph. D. thesis. Changchun: Jilin University: 1-28. (in Chinese)
    Zhang RL, Lu N, Wu YS. 2012. Efficiency of a community-scale borehole thermal energy storage technique for solar thermal energy. GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering: 4386-4395.
    Zhang SM, Gao Q, Bai L, et al. 2016. The influence of the underground aquifer flow pattern to the groundwater heat pump based on fluent/simulink. Journal of Basic Science and Engineering, 24(02): 242−252. (in Chinese) DOI: 10.16058/j.issn.1005-0930.2016.02.003.
    Zhang Y. 2023. Study on characteristics of seasonal underground energy storage based on borehole. M. S. thesis. Yangzhou: Yangzhou University: 1-10. (in Chinese)
    Zhang Y, Xue YQ, Xie CH. 1999. Derivation of darcy's law for high temperature situation. Advances in Water Science, 10(4): 362−367. (in Chinese)
    Zhang Y, Xue YQ, Xie CH, et al. 1999b. Flow equation with temperature variation and its applications in the aquifer thermal energy storage model. Geological Review, 45: 209−217. (in Chinese) DOI: 10.16509/j.georeview.1999.02.022.
    Zhang YY, Ye CT, Gong YL, et al. 2021b. Review and prospect of underground thermal energy storage technology. Integrated Intelligent Energy, 43(11): 49−57. (in Chinese) DOI: 10.3969/j.issn.1674-1951.2021.11.006.
    Zhang ZH, Wu JC, Xue YQ, et al. 1997. A study on the natural heat convection and the water rock thermal exchange in the aquifer thermal transfer process. Engineering Geology, 5(3): 269−275.
    Zhao XY, Wan MY, Shi XJ. 2004. Heat pump project which uses ATES System and its impact on the environment. Energy Engineering, 02: 20−24. (in Chinese) DOI: 10.16189/j.cnki.nygc.2004.02.006.
    Zheng XL, Shan BB, Cui H, et al. 2013. Test and numerical simulation on physical clogging during aquifer artificial recharge. Earth Science, 38(06): 1321−1326. (in Chinese) DOI: 10.3799/dqkx.2013.129.
    Zhou NQ, Kong LX, Wang XQ. 2022. Analysis and evaluation on the benefit of shallow geothermal energy development in Shanghai under the background of carbon neutral. Shanghai Land & Resources, 43(03): 1−7. (in Chinese) DOI: 10.3969/j.issn.2095-1329.2022.03.001.
    Zhu HY, Zhang WS, Wang YX. 2005. Research on the construction technology of control ground subsidence recharge well. Drilling Engineering, (S1): 200−205. (in Chinese)
  • [1] Meng-lei Ji, Shuai-chao Wei, Wei Zhang, Feng Liu, Yu-zhong Liao, Ruo-xi Yuan, Xiao-xue Yan, Long Li2024:  Characterization of rock thermophysical properties and factors affecting thermal conductivity−A case study of Datong Basin, China, Journal of Groundwater Science and Engineering, 12, 4-15. doi: 10.26599/JGSE.2024.9280002
    [2] Jia-xing Sun, Gao-fan Yue, Wei Zhang2023:  Simulation of thermal breakthrough factors affecting carbonate geothermal-to-well systems, Journal of Groundwater Science and Engineering, 11, 379-390. doi: 10.26599/JGSE.2023.9280030
    [3] Ma Xin, Wen Dong-guang, Yang Guo-dong, Li Xu-feng, Diao Yu-jie, Dong Hai-hai, Cao Wei, Yin Shu-guo, Zhang Yan-mei2021:  Potential assessment of CO2 geological storage based on injection scenario simulation: A case study in eastern Junggar Basin, Journal of Groundwater Science and Engineering, 9, 279-291. doi: 10.19637/j.cnki.2305-7068.2021.04.002
    [4] Yuan Ruo-xi, Wang Gui-ling, Liu Feng, Zhang Wei, Wang Wan-li, Cao Sheng-wei2021:  Evaluation of shallow geothermal energy resources in the Beijing-Tianjin-Hebei Plain based on land use, Journal of Groundwater Science and Engineering, 9, 129-139. doi: 10.19637/j.cnki.2305-7068.2021.02.005
    [5] KANG Wen-kai, LIU Feng, YANG Fei-fan, WANG Hua-jun2020:  Simulation of heat transfer performance using middle-deep coaxial borehole heat exchangers by FEFLOW, Journal of Groundwater Science and Engineering, 8, 315-327. doi: 10.19637/j.cnki.2305-7068.2020.04.002
    [6] Rasoul Daneshfaraz, Ehsan Aminvash, Reza Esmaeli, Sina Sadeghfam, John Abraham2020:  Experimental and numerical investigation for energy dissipation of supercritical flow in sudden contractions, Journal of Groundwater Science and Engineering, 8, 396-406. doi: 10.19637/j.cnki.2305-7068.2020.04.009
    [7] NAN Tian, GUO Si-jia2019:  Influence of borehole quantity and distribution on lithology field simulation, Journal of Groundwater Science and Engineering, 7, 295-308. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.001
    [8] XING Hui, DI Yan-song, YONG Yi2019:  Analysis on the law of occurrence of shallow geothermal energy in Zhoukou City of Henan Province, China, Journal of Groundwater Science and Engineering, 7, 282-287. doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.008
    [9] Nouayti Abderrahime, Khattach Driss, Hilali Mohamed, Nouayti Nordine2019:  Mapping potential areas for groundwater storage in the High Guir Basin (Morocco):Contribution of remote sensing and geographic information system, Journal of Groundwater Science and Engineering, 7, 309-322. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.002
    [10] ZHOU Bo, WEI Shan-ming, WANG Tao, NIE Yu-peng, WANG Chuan-qi2019:  Discussion on establishing monitoring networks for temperature fields of shallow thermal energy in Shandong, China, Journal of Groundwater Science and Engineering, 7, 86-93. doi: 10.19637/j.cnki.2305-7068.2019.01.009
    [11] WU Ting-wen, WANG Li-huan, WANG Lin-shu, KONG Qing-xuan2018:  Evaluation of groundwater quality and pollution in Daqing Oilfield, Journal of Groundwater Science and Engineering, 6, 40-48. doi: 10.19637/j.cnki.2305-7068.2018.01.005
    [12] TONG Shao-qing, DONG Yan-hui, ZHANG Qian, SONG Fan2017:  Visualizing complex pore structure and fluid flow in porous media using 3D printing technology and LBM simulation, Journal of Groundwater Science and Engineering, 5, 254-265.
    [13] ZHANG Pei-feng2016:  Thermal stresses analysis of casing string used in enhanced geothermal systems wells, Journal of Groundwater Science and Engineering, 4, 293-300.
    [14] LI Duo, WEI Ai-hua2016:  Analysis of influence of the power plant ash storage yard on groundwater environment, Journal of Groundwater Science and Engineering, 4, 35-40.
    [15] FEI Yu-hong, ZHANG Zhao-ji, LI Ya-song, GUO Chun-yan, TIAN Xia2015:  Quality evaluation of groundwater in the North China Plain, Journal of Groundwater Science and Engineering, 3, 306-315.
    [16] ZHU Xi, ZHANG Qing-lian, WANG Wan-li, LIU Yan-guang2015:  Study on the influencing factors of rock-soil thermophysical parameters in shallow geothermal energy, Journal of Groundwater Science and Engineering, 3, 256-267.
    [17] GUO Qing-shi, ZHOU Zhi-yong, GUO Si-si, HAO Ji-kun2014:  Application Research of Remote Sensing Technology in Regional Hydrogeological Survey, Journal of Groundwater Science and Engineering, 2, 62-67.
    [18] ZHANG Wei2014:  Establishment of an assessment method for site-scale suitability of CO2 geological storage, Journal of Groundwater Science and Engineering, 2, 19-25.
    [19] Wang Qian, Zhang Lizhong, Cai Zizhao, Huo Zhibin, Zhang Huaidong2013:  Evaluation Index System of Hydrogeological Investigation Software, Journal of Groundwater Science and Engineering, 1, 96-103.
    [20] Qiao Li, Jin-long Zhou, Shun-jun Hu, Bin-guo Wang, Rui-liang Jia2013:  Evaluation on Groundwater Resources of Medium Salinity in Tarim Basin and Development and Demonstration of Under-mulch-drip Irrigation Technology for Cotton, Journal of Groundwater Science and Engineering, 1, 10-21.
  • 加载中
图(4) / 表ll (5)
  • 文章访问数:  97
  • HTML全文浏览量:  47
  • PDF下载量:  88
  • 被引次数: 0
  • 收稿日期:  2023-09-18
  • 录用日期:  2023-12-25
  • 网络出版日期:  2024-03-15
  • 刊出日期:  2024-03-15