• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Health risk assessment of Fluoride and Cadmium enrichment in rural drinking groundwater in Shanxi Province, China

Qi-fa Sun Bing Lu Chuan-lei Lu Yuan Yang Xu Xie Lin Guo Chen Hu Xu Wang

Sun QF, Lu B, Lu CL, et al. 2026. Health risk assessment of Fluoride and Cadmium enrichment in rural drinking groundwater in Shanxi Province, China. Journal of Groundwater Science and Engineering, 14(1): 1-14 doi:  10.26599/JGSE.2026.9280067
Citation: Sun QF, Lu B, Lu CL, et al. 2026. Health risk assessment of Fluoride and Cadmium enrichment in rural drinking groundwater in Shanxi Province, China. Journal of Groundwater Science and Engineering, 14(1): 1-14 doi:  10.26599/JGSE.2026.9280067

doi: 10.26599/JGSE.2026.9280067

Health risk assessment of Fluoride and Cadmium enrichment in rural drinking groundwater in Shanxi Province, China

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Spatial distribution of groundwater sampling sites in the study area

    Figure  2.  Stacked bar chart of single-indicator groundwater quality evaluation

    Figure  3.  Spatial distribution map of F

    Figure  4.  Spatial distribution map of Cd

    Figure  5.  Proportion of F and Cd in various types of water

    Figure  6.  Health risk assessment map for infants

    Figure  7.  Risk bar chart for different age and gender groups

    Figure  8.  Comparison of health risks by population group and exposure route

    Table  1.   Analytical methods and detection limits for groundwater quality parameters

    AnalyteAnalytical methodDetection limit (mg/L)
    Na+Ion chromatography1
    Ca2+Acidic permanganate titrimetric method4
    Mg2+Acidic permanganate titrimetric method3
    NH4+Ion chromatography0.05
    ClIon chromatography3
    SO42−Ion chromatography3
    NO3Ion chromatography0.01
    NO2Spectrophotometry0.010
    FIon chromatography0.05
    CuFlame atomic absorption spectrophotometry0.007
    ZnFlame atomic absorption spectrophotometry0.003
    CdFlame atomic absorption spectrophotometry0.007
    NiFlame atomic absorption spectrophotometry0.012
    Cr6+Catalytic polarographic method0.02
    T FeInductively coupled plasma atomic emission spectrometry0.05
    MnInductively coupled plasma atomic emission spectrometry0.05
    H2SiO3Silicon molybdenum yellow spectrophotometry1.3
    AsHydride generation atomic fluorescence spectrometry0.0005
    HgCold atomic absorption spectrophotometry0.0001
    CODMnAcidic permanganate titrimetric method0.4
    CaCO3EDTA titrimetric method5
    TDSGravimetric method
    pHGlass-electrodes method
    SrInductively coupled plasma atomic emission spectrometry0.05
    SeCatalytic polarographic method0.0005
    LiIon chromatography0.02
    AlInductively coupled plasma atomic emission spectrometry0.005
    PbInductively coupled plasma atomic emission spectrometry0.3
    Note: “—” indicates no applicable detection limit for the parameter.
    下载: 导出CSV

    Table  2.   Definitions and values of exposure assessment parameters.

    Parameter Meaning Value Unit
    Children Females Males Infants  
    EF Exposure frequency 365 365 365b 365 d/a
    BW Average body weight 32.02 a 60.4a 69.55a 7.68 a kg
    ABS Gastrointestinal absorption coefficient 0.5c 0.5c 0.5c 0.5c  
    IR Daily water intake 1.5b 2e 2e 0.65b L/d
    ED Exposure duration 6b 30b 30b 0.5d a
    SA Body surface areas 9035.2 1600a 1700a 3416 cm2
    AT Average exposure time 2190 10950 10950 182.5b d
    EV Bathing frequency 1b time/d
    ET Bath time 0.167c h/d
    CF Unit conversion factor 0.002b L/cm3
    KP Dermal adsorption 0.001b cm/h
    a Data source: The State Council of the People's Republic of China (2021).
    b Data source: Tian et al. (2020a).
    c Data source: Sun et al. (2024c).
    d Data source: Tian et al. (2020c).
    e Data source: The National Bureau of Statistics of the People's Republic of China (2003).
    下载: 导出CSV

    Table  3.   Single index evaluation results of groundwater quality

    Indicator Class I Class II Class III Class IV Class V
    Colour 100% 0% 0% 0% 0%
    Odor 100% 0% 0% 0% 0%
    Turbidity 58% 0% 0% 37% 5%
    Visible objects 100% 0% 0% 0% 0%
    pH 87% 0% 0% 11% 3%
    Al 0% 92% 8% 0% 0%
    Mn 97% 0% 3% 0% 0%
    Cu 100% 0% 0% 0% 0%
    Zn 97% 3% 0% 0% 0%
    Cl 100% 0% 0% 0% 0%
    SO42− 95% 3% 0% 0% 3%
    CaCO3 29% 66% 3% 3% 0%
    TDS 79% 18% 3% 0% 0%
    COD 87% 11% 3% 0% 0%
    As 100% 0% 0% 0% 0%
    Cd 92% 0% 0% 8% 0%
    Cr6+ 82% 16% 3% 0% 0%
    Pb 100% 0% 0% 0% 0%
    Hg 100% 0% 0% 0% 0%
    Se 100% 0% 0% 0% 0%
    F 13% 68% 13% 3% 3%
    NO3 100% 0% 0% 0% 0%
    NH4+ 68% 0% 32% 0% 0%
    Na+ 100% 0% 0% 0% 0%
    NO2 0% 92% 8% 0% 0%
    Ni 100% 0% 0% 0% 0%
    下载: 导出CSV

    Table  4.   Correlation matrix of groundwater hydrochemical parameters

    t.d CaCO3 TDS pH Ca2+ Mg2+ SO42− F Cd Sr
    t.d 1
    CaCO3 −0.072 1
    TDS −0.06 0.990** 1
    pH −0.108 −0.322 −0.371* 1
    Ca2+ 0.01 0.931** 0.962** −0.505** 1
    Mg2+ −0.122 0.840** 0.779** 0.018 0.593** 1
    SO42− −0.034 0.734** 0.785** −0.596** 0.884** 0.354 1
    F 0.032 −0.034 −0.013 −0.046 0.088 −0.192 0.224 1
    Cd −0.016 0.137 0.082 0.307 −0.009 0.25 −0.067 −0.168 1
    Sr −0.002 0.795** 0.835** −0.570** 0.914** 0.412* 0.953** 0.237 0.085 1
    Notes: ** At the 0.01 level (bilateral), there is a significant correlation.
    * At the 0.05 level (bilateral), there is a significant correlation.
    t.d- turbidity degree.
    TDS- Total Dissolved Solids.
    下载: 导出CSV

    Table  5.   Statistical summary of hazard coefficient for Cd

    GroupMalesFemalesChildrenInfants
    HIderm-water0.00080.00080.00890.0066
    HIoral-water0.22720.26160.37010.6686
    HI0.22790.26240.37900.6752
    下载: 导出CSV

    Table  6.   Statistical summary of hazard coefficient of F

    GroupMalesFemalesChildrenInfants
    HIderm-water0.0040.0050.0510.037
    HIoral-water1.2931.4892.1063.806
    HI1.2971.4942.1573.843
    下载: 导出CSV
  • Alireza RD, Seyed AH, Vahid, et al. 2020. Assessing pollution risk in Ardabil aquifer groundwater of Iran with arsenic and nitrate using the SINTACS model. Polish Journal of Environmental Studies, 29: 2609. DOI:  10.15244/pjoes/112903.
    Anju M, Kavita. 2022. Fluoride contamination in groundwater of intensively cropped Upper Yamuna alluvial basin of India: A hydrogeochemical, human health risk assessment, and multivariate statistical perspective. Arabian Journal of Geosciences, 15: 1473. DOI:  10.1007/s12517-022-10728-9.
    Cao W, Fu Y, Cheng Y, et al. 2023a. Modeling potential arsenic enrichment and distribution using stacking ensemble learning in the lower Yellow River Plain, China. Journal of Hydrology, 625: 129985. DOI:  10.1016/j.jhydrol.2023.129985.
    Cao W, Zhang Z, Fu Y, et al. 2024 Prediction of arsenic and fluoride in groundwater of the North China Plain using enhanced stacking ensemble learning. Water Research, 259: 121848. Doi: 10.1016/j.watres.2024.121848
    Cao W, Zhang Z, Guo H, et al. 2023b. Spatial distribution and controlling mechanisms of high fluoride groundwater in the coastal plain of Bohai Rim, North China. Journal of Hydrology, 617: 128952. DOI:  10.1016/j.jhydrol.2022.128952.
    Chen J, Wu H, Qian, H, et al. 2017. Assessing nitrate and fluoride contaminants in drinking water and their health risk of rural residents living in a semiarid region of northwest China. Exposure and Health, 9: 183. DOI:  10.1007/s12403-016-0231-9.
    Churchill HV, Rowley RJ, Martin LN. 1948. Flourine content of certain vegetation in western Pennsylvania area. Analytical Chemistry, 20(1): 69−71. DOI:  10.1021/ac60013a018.
    Huang Y, Zuo, R, Li J, et al. 2018. The spatial and temporal variability of groundwater vulnerability and human health risk in the Limin District, Harbin, China. Water, 10: 686. DOI:  10.3390/w10060686.
    Hu Q, Guo QL, Yang YS, et al. 2024. Analysis on characteristics and sources of heavy metal pollution in groundwater in coal mining areas. Nonferrous Metals (Extractive Metallurgy), (4): 111−119,177. DOI:  10.3390/w15234091.
    Jing XY, Li XZ, Wang WJ, et al. 2022. Distribution characteristics and health risk assessment of fluorine in groundwater in Yinchuan Plain. Environmental Science & Technology, 45(2): 174−181. (in Chinese). DOI:  10.19672/j.cnki.1003-6504.1833.21.338.
    José RR, Carlos R, Lawren E, et al. 2021. Russell Flegal. Monitoring of As, Cd, Cr, and Pb in groundwater of Mexico's agriculture Mocorito River aquifer: Implications for risks to human health. Water, Air, Soil Pollution, 232(7): 1−20. DOI:  10.1007/s11270-021-05238-5.
    Li FY, Jiang TY, Yu T, et al. 2021. Review on sources of fluorine in the environment and health risk assessment. Rock and Mineral Analysis, 40(6): 793−807. (in Chinese). DOI:  10.15898/j.cnki.11-2131/td.202109290133.
    Li XZ, Cao WG, Li Y, et al. 2024. The hazards of fluorine-containing groundwater, current status and progress of treatment technologies. Geology in China, 51(2): 457−482. (in Chinese). DOI:  10.12029/gc20230513001.
    Li ZX, Gui HQ. 1980. Fluorine pollution and its enrichment in groundwater in Baotou area. Hydrogeology and Engineering Geology, 7(4): 49−50. (in Chinese).
    Marghade D, Malpe DB, SubbaRao N. 2021. Applications of geochemical and multivariate statistical approaches for the evaluation of groundwater quality and human health risks in a semi-arid regionof eastern Maharashtra, India. Environmental Geochemistry and Health, 43: 683. DOI:  10.1007/s10653-019-00478-1.
    Ni B, Wang HB, Li XD, et al. 2010. Environmental health risk assessment of drinking water source in lakes. Environmental Science and Pollution Research, 46(1): 74−79. (in Chinese). DOI:  10.13198/j.res.2010.01.76.nib.012.
    Nitika M, Anju M, Shewane B. 2021. Assessment of groundwater hydro-geochemistry, quality, and human health risk in arid area of India using chemometric approach. Arabian Journal of Geosciences, 14: 1546. DOI:  10.1007/s12517-021-07852-3.
    Pan YL, Su CL, Wang YX, et al. 2013. Distribution characteristics and controlling factors of fluoride in sediments in the Shanyin Yingxian area of Datong Basin. Mineral Rocks, 33(02): 109−114. (in Chinese). DOI:  10.19719/j.cnki.1001-6872.2013.02.015.
    Sanjay P, Bhavesh P, Ajaykumar K, et al. 2024. Nitrate and fluoride contamination in the groundwater in a tribal region of north Maharashtra, India: An account of health risks and anthropogenic influence. Groundwater for Sustainable Development, 25: 101107. DOI:  10.1016/j.gsd.2024.101107.
    Saravanan R, Balamurugan P, Shunmuga PK. 2022. Effect of high nitrate contamination of groundwater on human health and water quality index in semi-arid region, south India. Arabian Journal of Geosciences, 15: 242. DOI:  10.1007/s12517-022-09553-x.
    State Council of the People's Republic of China, Report on the nutrition and chronic disease status of Chinese Residents, 2021.
    Sun QF, Sun ZA, Tian H. et al. 2020a. Dynamic characteristics and difference analysis of the groundwater in Changchun New District. Geology and Resources, 29: 369. (in Chinese). DOI:  10.13686/j.cnki.dzyzy.2020.04.010.
    Sun QF, Jia LG, Tian H, et al. 2020b. Chemical characteristics and genesis analysis of the groundwater in Lianhuashan Area, Changchun City. Geology and Resources, 29: 476. (in Chinese). DOI:  10.13686/j.cnki.dzyzy.2020.05.010.
    Sun QF, Jia LG, Sun ZA, et al. 2022a. Characteristics and applicability of groundwater quality in Oroqen Qi, Inner Mongolia. Geology and Resources, 31: 88. (in Chinese). DOI:  10.13686/j.cnki.dzyzy.2022.01.011.
    Sun QF, Yang K, Sun ZA, et al. 2022b. Characteristics of groundwater quality in Changchun new area and its evaluation on ecological health. Geology in China, 49: 834. (in Chinese). DOI:  10.12029/gc20220311.
    Sun QF, Sun ZA, Jia LG, et al. 2023a. Formation mechanism of strontiumrich and metasilicic acid groundwater in the Lianhuashan area, Changchun, Jilin Province. Geology in China, 50(1): 181−190. (in Chinese). DOI:  10.12029/gc20200624001.
    Sun QF, Yang K, Liu T, et al. 2023b. Health risk assessment of nitrate pollution of drinking groundwater in rural areas of Suihua, China. Journal of Water and Health, 21(9): 1193−1208. DOI:  10.2166/wh.2023.069.
    Sun QF, Lang GH, Liu T, et al. 2024a. Health risk analysis of nitrate in groundwater in Shanxi Province, China: A case study of the Datong Basin. Journal of Water and Health, 22(4): 701−716. DOI:  10.2166/wh.2024.320.
    Sun QF, Yang K, Li CH, et al. 2024b. Analysis on the chemical characteristics and genesis of drinking groundwater in rural areas of Suihua City, Northeast China. Environmental Forensics, 1−12. DOI:  10.1080/15275922.2023.2297871.
    Sun QF, Guo L, Hu C, et al. 2024c. Health risk assessment of drinking groundwater in rural areas of Ru village and surrounding areas in Wutai County, China. Journal of Water and Health, 22(1): 183−196. DOI:  10.2166/wh.2023.277.
    Tian H, Du JZ, Sun QF, et al. 2020a. Using the Water Quality Index (WQI), and the Synthetic Pollution Index (SPI) to evaluate the groundwater quality for drinking purpose in Hailun, China. Sains Malaysiana, 49: 2383. DOI:  10.17576/jsm-2020-4910-05.
    Tian H, Sun QF, Kang Z, et al. 2020b. Groundwater chemistry and health risks associated with nitrate intake in Hailun, Northeast China. Journal of Water and Health, 18: 1033. DOI:  10.2166/wh.2020.050.
    Tian H, Liang XJ, Gong Y, et al. 2020c. Risk assessment of metals from shallow groundwater in Lianhuashan District, China. La Houille Blanche, 119: 5. DOI:  10.1051/lhb/2019063.
    Tian H, Liang XJ, Gong Y, et al. 2020d. Health risk assessment of nitrate pollution in shallow groundwater: A case study in China. Polish Journal of Environmental Studies, 29: 827. DOI:  10.1051/lhb/2019055.
    USEPA. 2001. Risk assessment guidance for superfund Volume III: Part A, Process for conducting probabilistic risk assessment. US Environmental Protection Agency, Washington, DC, USA.
    Xiao J, Jin ZD, Zhang F. 2015. Geochemical controls on fluoride concentrations in natural waters from the middle Loess Plateau, China. Journal of Geochemical Exploration, 159: 252−261. DOI:  10.1016/j.gexplo.2015.09.018.
    Xu JJ, Zhao YL, Chen HY, et al. 2023. ABC-GSPBFT: PBFT with grouping score mechanism and optimized consensus process for flight operation data-sharing. Information Sciences, 624: 110−127. DOI:  10.1016/j.ins.2022.12.068.
    Yuan TJ, Jin G, Li YF, et al. 2024. Analysis of the sources and enrichment mechanisms of fluoride in the groundwater system of Datong Basin. Safety and Environmental Engineering, DOI: 10.13578/j.cnki.issn.1671-1556.20240139.
    Zhou YH, Wei AH, Li JF, et al. 2016. Groundwater quality evaluation and health risk assessment in the Yinchuan Region, Northwest China. Exposure and Health, 8: 443. DOI:  10.1007/s12403-016-0219-5.
  • [1] Yu-xiang Shao, Wei Zhang, Wen-bin Chen, Li Chen, Jian Li, Guang-long Tian, Li-cheng Quan, Bu-qing Yan, Yu-jie Liu2025:  Causes and health risk assessment of fluorine in the Red bed groundwater and adjacent geothermal water of the Guang'an Area, Southwest China, Journal of Groundwater Science and Engineering, 13, 116-132. doi: 10.26599/JGSE.2025.9280043
    [2] Fu-ning Lan, Yi Zhao, Jun Li, Xiu-qun Zhu2024:  Health risk assessment of heavy metal pollution in groundwater of a karst basin, SW China, Journal of Groundwater Science and Engineering, 12, 49-61. doi: 10.26599/JGSE.2024.9280005
    [3] Yan-pei Cheng, Fa-wang Zhang, Hua Dong, Xue-ru Wen2024:  Groundwater and environmental challenges in Asia, Journal of Groundwater Science and Engineering, 12, 223-236. doi: 10.26599/JGSE.2024.9280017
    [4] Djafer Khodja Hakim, Aichour Amina, Metaiche Mehdi, Ferhati Ahmed2024:  Groundwater quality assessment for drinking and irrigation purposes in Boumerdes Region, Algeria, Journal of Groundwater Science and Engineering, 12, 397-410. doi: 10.26599/JGSE.2024.9280030
    [5] Ya-wei Zhang, Yun-tao Liu, Zi-wen Wang, Yu Cao, Xiao-ran Tu, Di Cao, Shuai Yuan, Xiao-man Cheng, Lian-sheng Zhang2023:  Source analysis of dissolved heavy metals in the Shaying River Basin, China, Journal of Groundwater Science and Engineering, 11, 408-421. doi: 10.26599/JGSE.2023.9280032
    [6] Tanzeel Khan, Muhammad Akhtar Malik, Gohram Malghani, Rabia Akhtar2022:  Comparative analysis of bacterial contamination in tap and groundwater: A case study on water quality of Quetta City, an arid zone in Pakistan, Journal of Groundwater Science and Engineering, 10, 153-165. doi: 10.19637/j.cnki.2305-7068.2022.02.005
    [7] ZHOU Hao, WU Yong, HUANG Feng, TANG Xue-fang2021:  Experimental simulation and dynamic model analysis of Cadmium (Cd) release in soil affected by rainfall leaching in a coal-mining area, Journal of Groundwater Science and Engineering, 9, 65-72. doi: 10.19637/j.cnki.2305-7068.2021.01.006
    [8] Bahrami Mehdi, Khaksar Elmira, Khaksar Elahe2020:  Spatial variation assessment of groundwater quality using multivariate statistical analysis(Case Study: Fasa Plain, Iran), Journal of Groundwater Science and Engineering, 8, 230-243. doi: 10.19637/j.cnki.2305-7068.2020.03.004
    [9] WU Ting-wen, WANG Li-huan, WANG Lin-shu, KONG Qing-xuan2018:  Evaluation of groundwater quality and pollution in Daqing Oilfield, Journal of Groundwater Science and Engineering, 6, 40-48. doi: 10.19637/j.cnki.2305-7068.2018.01.005
    [10] TAO Hong, ZHENG Miao-miao, FAN Li-min, LI Wen-li, DING Jia, LI Hui, HE Xu-bo, TAO Fu-ping2017:  Research on quality changes and influencing factors of groundwater in the Guanzhong Basin, Journal of Groundwater Science and Engineering, 5, 296-302.
    [11] LIU Shu-yuan, WANG Hong-qi2016:  Dynamic assessment of pollution risk of groundwater source area in Northern China, Journal of Groundwater Science and Engineering, 4, 333-343.
    [12] LI Duo, WEI Ai-hua2016:  Analysis of influence of the power plant ash storage yard on groundwater environment, Journal of Groundwater Science and Engineering, 4, 35-40.
    [13] YI Qing, GE Li-qiang, CHENG Yan-pei, DONG Hua, LIU Kun, ZHANG Jian-kang, YUE Chen2015:  Compilation of Groundwater Quality Map and study of hydrogeochemical characteristics of groundwater in Asia, Journal of Groundwater Science and Engineering, 3, 176-185.
    [14] FEI Yu-hong, ZHANG Zhao-ji, LI Ya-song, GUO Chun-yan, TIAN Xia2015:  Quality evaluation of groundwater in the North China Plain, Journal of Groundwater Science and Engineering, 3, 306-315.
    [15] SHI Jian-sheng, LIU Chang-li, DONG Hua, YAN Zhen-peng, WANG Yan-jun, LIU Xin-hao, GUO Xiu-yan, JIAO Hong-jun, YIN Mi-ying, HOU Huai-ren2014:  Stability assessment and risk analysis of aboveground river in lower Yellow River, Journal of Groundwater Science and Engineering, 2, 1-18.
    [16] GAO Zong-jun, ZHU Zhen-hui, LIU Xiao-di, XU Yan-lan2014:  The Formation and Model of High Fluoride Groundwater and In-situ Dispelling Fluoride Assumption in Gaomi City of Shandong Province, Journal of Groundwater Science and Engineering, 2, 34-39.
    [17] Meng-jie Wu, Hui-zhen Hen2013:  Brief Talk of Groundwater Resources in Role of Rural Drinking Water Safety and Construction of City Emergency Water Source, Journal of Groundwater Science and Engineering, 1, 40-52.
    [18] Zhao-xian Zheng, Xiao-si Su2013:  Risk Assessment on Organic Contamination of Shallow Groundwater of an Oilfield in Northeast China, Journal of Groundwater Science and Engineering, 1, 75-82.
    [19] Shi-jie Xie, Qiang Zhang, Yu-chong Qiu2013:  Simulation and Prediction of the Fluorides Migration in a Tailing Pond Using Modflow, Journal of Groundwater Science and Engineering, 1, 33-39.
    [20] Aizhong Ding, Lirong Cheng, Steve Thornton, Wei Huang, David Lerner2013:  Groundwater quality Management in China, Journal of Groundwater Science and Engineering, 1, 54-59.
  • 加载中
图(8) / 表ll (6)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  10
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-12
  • 录用日期:  2025-06-30
  • 网络出版日期:  2025-11-20
  • 刊出日期:  2026-03-15

目录

    /

    返回文章
    返回