• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Precision and trueness of a method for determing antimony content in groundwater using hydride generation-atomic fluorescence spectrometry

Bing-bing Liu Lin Zhang Ke Li

Liu BB, Zhang L, Li K. 2026. Precision and trueness of a method for determing antimony content in groundwater using hydride generation-atomic fluorescence spectrometry. Journal of Groundwater Science and Engineering, 14(1): 49-58 doi:  10.26599/JGSE.2026.9280071
Citation: Liu BB, Zhang L, Li K. 2026. Precision and trueness of a method for determing antimony content in groundwater using hydride generation-atomic fluorescence spectrometry. Journal of Groundwater Science and Engineering, 14(1): 49-58 doi:  10.26599/JGSE.2026.9280071

doi: 10.26599/JGSE.2026.9280071

Precision and trueness of a method for determing antimony content in groundwater using hydride generation-atomic fluorescence spectrometry

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Mandel's h statistics grouped by laboratory

    Figure  2.  Mandel's k statistic grouped by laboratory

    Figure  3.  Data fitting relationship between r and m

    Figure  4.  Data fitting relationship between R and m

    Table  1.   Sample information

    Sample number YP-1 YP-2 YP-3 YP-4 YP-5
    pH 8.37 8.38 7.35 7.95 7.86
    Hydrochemical type HCO3+Cl-Na HCO3-Na HCO3+SO4-Ca+Mg HCO3-Ca HCO3-Ca
    Antimony content (μg/L) 0.10–0.30 0.50–1.00 1.20–1.80 2.00–3.00 3.00–5.00
    下载: 导出CSV

    Table  2.   Method trueness test

    Sample number Background value (μg/L) Added value (μg/L) Measured value (μg/L) Recovery rate (%)
    1# N.D 0.30 0.3021, 0.3104, 0.3068, 0.3113, 0.3124, 0.2943, 98.10%–104.7%
    0.3081, 0.3108, 0.3056, 0.3099, 0.3011, 0.3142
    1.00 0.9874, 1.0196, 1.0296, 0.9851, 0.9644, 0.9661 96.20%–105.7%
    1.0281, 1.0574, 0.9996, 1.0471, 1.0056, 0.9620
    3.00 2.9761, 2.9914, 2.9414, 3.0499, 3.0309, 3.0354 98.05%–103.8%
    3.0980, 3.0695, 3.0662, 3.1142, 2.9856, 3.0304
    2# N.D 0.30 0.3072, 0.3121, 0.3078, 0.2906, 0.2964, 0.2933 95.77%–104.3%
    0.3110, 0.2873, 0.3024, 0.3018, 0.3128, 0.3115
    1.00 0.9654, 0.9511, 0.9758, 0.9882, 1.0274, 1.0447 95.11%–104.5%
    1.0115, 1.0083, 1.0356, 1.0298, 1.0059, 0.9627
    3.00 3.1055, 3.0631, 2.9652, 3.0321, 3.0615, 3.0629 97.18%–103.5%
    2.9881, 3.0054, 3.0015, 3.0445, 2.9653, 2.9155
    下载: 导出CSV

    Table  3.   Comparison of HG-AFS, HG-AAS and ICP-MS methods

    Performance indicators This method (HG-AFS) HG-AAS (Li et al. 2008) ICP-MS (Zhang et al. 2016)
    Detection limit (μg/L) 0.02 0.31 0.03
    Precision (RSD,%) 1.34–2.46 2.2-4.2 0.36–1.15
    Linear range (μg/L) 0–5.0 0–20.0 0–50.0
    Matrix interference Transition metals (Cu, Ni, etc.) Transition metals, hydride-forming elements Mass spectrometry interference
    Analysis costs Low Intermediate Very High
    下载: 导出CSV

    Table  4.   Mean and standard deviation of antimony content analysis results for each unit Unit: μg/L

    Laboratory number Level
    1 2 3 4 5
    Mean Standard deviation Mean Standard deviation Mean Standard deviation Mean Standard deviation Mean Standard deviation
    1 0.256 0.017 0.832 0.016 1.520 0.037 2.254 0.064 4.620 0.051
    2 0.248 0.014 0.932 0.040 1.542 0.077 2.176 0.092 4.556 0.189
    3 0.252 0.008 0.796 0.027 1.482 0.036 2.270 0.061 4.616 0.129
    4 0.244 0.017 0.816 0.015 1.562 0.015 2.272 0.051 4.606 0.103
    5 0.230 0.010 0.824 0.023 1.546 0.036 2.250 0.043 4.762 0.049
    6 0.314 0.009 0.876 0.005 1.542 0.064 2.260 0.068 4.530 0.114
    7 0.252 0.019 0.728 0.002 1.376 0.021 2.130 0.046 4.416 0.034
    8 0.274 0.011 0.860 0.016 1.406 0.017 2.232 0.022 4.546 0.027
    9 0.324 0.018 0.732 0.013 1.364 0.015 2.020 0.020 4.148 0.038
    10 0.257 0.004 0.787 0.010 1.482 0.019 2.195 0.021 4.563 0.030
    下载: 导出CSV

    Table  5.   Grubbs and Cochran test results

    Collaborative sample number YP-1 YP-2 YP-3 YP-4 YP-5
    Grubbs test Gp 1.928 1.375 1.138 0.926 1.829
    G1 1.149 1.517 1.47 1.964 1.694
    1% critical value 2.482 2.387 2.387 2.387 2.274
    5% critical value 2.29 2.215 2.215 2.215 2.126
    Cochran test C 0.197 0.316 0.424 0.298 0.348
    1% critical value 0.393 0.425 0.425 0.425 0.463
    5% critical value 0.331 0.358 0.358 0.358 0.391
    下载: 导出CSV

    Table  6.   Statistical analysis results of method precision and trueness parameters

    Statistical parameters Level
    1 2 3 4 5
    Number of accepted laboratories (p) 10 9 8 9 8
    Number of test replicates (n) 5 5 5 5 5
    Grand mean (m)/(μg/L) 0.265 0.806 1.47 2.23 4.58
    Acceptable reference value (μ)/(μg/L) 0.26 0.80 1.50 2.20 4.55
    Repeatability standard deviation (sr)/(μg/L) 0.014 0.016 0.026 0.056 0.078
    Repeatability coefficient of variation/% 5.09 1.99 1.79 2.52 1.69
    Repeatability limit (r)/(μg/L) 0.038 0.045 0.074 0.159 0.219
    Reproducibility standard deviation (sR)/(μg/L) 0.033 0.053 0.080 0.070 0.120
    Reproducibility coefficient of variation/% 12.41 6.59 5.47 3.16 2.62
    Reproducibility limit (R)/(μg/L) 0.093 0.150 0.227 0.199 0.340
    γ=sR/sr 2.429 3.311 3.048 1.250 1.551
    Uncertainty coefficient (A) 0.630 0.625 0.626 0.658 0.645
    Method bias value (δ)/(μg/L) 0.005 0.006 -0.033 0.027 0.032
    δA*sR/(μg/L) −0.016 −0.027 −0.083 −0.020 −0.045
    δ + A*sR/(μg/L) 0.026 0.039 0.018 0.073 0.110
    下载: 导出CSV

    Table  7.   Inter-laboratory precision Unit: μg/L

    Element Mean level (m) Repeatability limit (r) Reproducibility limit (R)
    Antimony 0.26–4.55 r = 0.0451 m + 0.0229 R = 0.1668 m 0.4357
    Note: The precision was determined in accordance with GB/T 6379.2, based on statistical analysis of data from ten laboratories, each performing five replicate determinations for five concentration levels under repeatability conditions, after the elimination of outliers.
    下载: 导出CSV
  • Azooz EA, Al-Murshedi AYM, Abodiame AAM, et al. 2024. A novel green cloud point extraction-based switchable hydrophilicity solvent method for antimony separation and quantification from various bottled beverages by HGAAS. Microchemical Journal, 207: 111824. DOI:  10.1016/j.microc.2024.111824.
    Bolan N, Kumar M, Singh E, et al. 2022. Antimony contamination and its risk management in complex environmental settings: A review. Environment International, 158: 106908. DOI:  10.1016/j.envint.2021.106908.
    Correia FO, Almeida TS, Garcia RL, et al. 2019. Sequential determination and chemical speciation analysis of inorganic as and Sb in airborne particulate matter collected in outdoor and indoor environments using slurry sampling and detection by HG AAS. Environmental Science and Pollution Research, 26(21): 21416−21424. DOI:  10.1007/s11356-019-04638-9.
    Cui J, Zhao XH, Wang Y, et al. 2014. Research on optimization of mathematical model of flow injection-hydride generation-atomic fluorescence spectrometry. Spectroscopy and Spectral Analysis, 34(1): 246-251. (in Chinese) DOI: 10.3964/j.issn.1000-0593(2014)01-0246-06.
    Ferreira SLC, Anjos JP, Felix CSA, et al. 2019. Speciation analysis of antimony in environmental samples employing atomic fluorescence spectrometry-Review. TrAC Trends in Analytical Chemistry, 110: 335−343. DOI:  10.1016/j.trac.2018.11.017.
    Filter J, Schröder C, El-Athman F, et al. 2024. Nitrate-induced mobilization of trace elements in reduced groundwater environments. Science of The Total Environment, 927: 171961. DOI:  10.1016/j.scitotenv.2024.171961.
    Flores M, Fernández-Casal R, Naya S, et al. 2018a. ILS: An R package for statistical analysis in Interlaboratory Studies. Chemometrics and Intelligent Laboratory Systems, 181: 11−20. DOI:  10.1016/j.chemolab.2018.07.013.
    Flores M, Moreno G, Solórzano C, et al. 2021. Robust bootstrapped Mandel's h and k statistics for outlier detection in interlaboratory studies. Chemometrics and Intelligent Laboratory Systems, 219: 104429. DOI:  10.1016/j.chemolab.2021.104429.
    Flores M, Tarrío-Saavedra J, Fernández-Casal R, et al. 2018b. Functional extensions of Mandel's h and k statistics for outlier detection in interlaboratory studies. Chemometrics and Intelligent Laboratory Systems, 176: 134−148. DOI:  10.1016/j.chemolab.2018.03.016.
    Fu XX, Xie XJ, Charlet L, et al. 2023. A review on distribution, biogeochemistry of antimony in water and its environmental risk. Journal of Hydrology, 625: 130043. DOI:  10.1016/j.jhydrol.2023.130043.
    Gil-Díaz T, Pougnet F, Dutruch L, et al. 2024. Reactivity and fluxes of antimony in a macrotidal estuarine salinity gradient: Insights from single and triple quadrupole ICP-MS performances. Marine Chemistry, 267: 104465. DOI:  10.1016/j.marchem.2024.104465.
    Haider FU, Zulfiqar U, Ain NU, et al. 2024. Managing antimony pollution: Insights into soil–plant system dynamics and remediation strategies. Chemosphere, 362: 142694. DOI:  10.1016/j.chemosphere.2024.142694.
    Lan JM, Jiang T, Mei JH, et al. 2023. Characterization and causes of interannual variation of antimony contamination in groundwater of a typical antimony mining area. Hydrogeology and Engineering Geology, 50(5): 192−202. (in Chinese) DOI:  10.16030/j.cnki.issn.1000-3665.202302052.
    Li JQ, Zhou JT, Song XR. 2008. Determination of Sb(Ⅲ) and Sb(Ⅴ) by atomic absorption spectrometry with hydride generation. Physical Testing and Chemical Analysis (Part B (Chemical Analysis)), 44(2): 168−170. (in Chinese)
    Li R, Yan YT, Xu JQ, et al. 2024. Evaluate the groundwater quality and human health risks for sustainable drinking and irrigation purposes in mountainous region of Chongqing, Southwest China. Journal of Contaminant Hydrology, 264: 104344. DOI:  10.1016/j.jconhyd.2024.104344.
    Li YJ, Yang ZJ, Dong GF, et al. 2017. Simultaneous determination of arsenic and antimony in lead ingot by hydride generation-atomic fluorescence spectrometry. Metallurgical Analysis, 37(11): 75−79. (in Chinese) DOI:  10.13228/j.boyuan.issn1000-7571.010172.
    Liu BB, Liu J, Zhang CL, et al. 2021. Determination of trace antimony in environmental water by hydride generation-atomic fluorescence spectrometry. Water Purification Technology, 40(8): 40−43, 96. (in Chinese) DOI:  10.15890/j.cnki.jsjs.2021.08.006.
    Peta K, Love G, Brown CA. 2024. Comparing repeatability and reproducibility of topographic measurement types directly using linear regression analyses of measured heights. Precision Engineering, 88: 192−203. DOI:  10.1016/j.precisioneng.2024.02.009.
    Xiong Y, Dong YN, Pei RH, et al. 2017. Precision determination and evaluation of antimony ore chemical phase analysis method. Metallurgical Analysis, 37(3): 13−20. (in Chinese) DOI:  10.13228/j.boyuan.issn1000-7571.010002.
    Wang WQ, Cheng XY, Song YY, et al. 2023a. Elevated antimony concentration stimulates rare taxa of potential autotrophic bacteria in the Xikuangshan groundwater. Science of The Total Environment, 864: 161105. DOI:  10.1016/j.scitotenv.2022.161105.
    Wang WQ, Lei JW, Li M, et al. 2023b. Archaea are better adapted to antimony stress than their bacterial counterparts in Xikuangshan groundwater. Science of The Total Environment, 905: 166999. DOI:  10.1016/j.scitotenv.2023.166999.
    Wu BW, Qian Y. 2020. Explore methods for testing outliers in inter-laboratory comparison test results. China Fiber Inspection, (4): 82−86. (in Chinese) DOI:  10.14162/j.cnki.11-4772/t.2020.04.023.
    Yang YM. 2019. Determination of silver, copper, arsenic, antimony, bismuth and cadmium in stream sediment by inductively coupled plasma mass spectrometry. Metallurgical Analysis, 39(7): 58−64. (in Chinese) DOI:  10.13228/j.boyuan.issn1000-7571.010632.
    Zhang M, Cai YM, Xiao L, et al. 2023. Discussion on the precision evaluation method of serpentine phase quantitative analysis by X-ray diffraction. Rock and Mineral Analysis, 42(3): 513−522. (in Chinese) DOI:  10.15898/j.cnki.11-2131/td.202101180010.
    Zhang S. 2014. Development and application of high sensitivity atomic fluorescence spectrometry instrument. Ph. D. thesis. Xiamen: Xiamen University: 8−22. (in Chinese)
    Zhang XY, Gu XM, Zhou MF, et al. 2016. Comparison between AFS and ICP-MS in the determination of antimony in water. Environmental Monitoring and Forewarning, 8(6): 26-28. (in Chinese) DOI: 10.3969/j.issn.1674-6732.2016.06.007.
    Zhang Y, Ding CX, Gong DX, et al. 2021. A review of the environmental chemical behavior, detection and treatment of antimony. Environmental Technology & Innovation, 24: 102026. DOI:  10.1016/j.eti.2021.102026.
    Zhao QY, Zhang ZM, Tan Z, et al. 2024. Speciation and environmental pollution characteristics in three typical antimony mining areas of southwest China. Research of Environmental Sciences, 37(7): 1612−1625. (in Chinese) DOI:  10.13198/j.issn.1001-6929.2024.03.05.
  • [1] Yu-hong Fei, Su-hua Meng, Ya-song Li, Peng-wei Zhang, Xi-lin Bao2024:  Critical issues in the characteristics and assessment of China's water resources, Journal of Groundwater Science and Engineering, 12, 463-474. doi: 10.26599/JGSE.2024.9280033
    [2] Xiang Gao, Tai-lu Li, Yu-wen Qiao, Yao Zhang, Ze-yu Wang2024:  A combined method using Lattice Boltzmann Method (LBM) and Finite Volume Method (FVM) to simulate geothermal reservoirs in Enhanced Geothermal System (EGS), Journal of Groundwater Science and Engineering, 12, 132-146. doi: 10.26599/JGSE.2024.9280011
    [3] ILUNGA Nyembwe, AMADI Akobundu Nwanosike, Gilbert NDATIMANA, Nelson OKOT, Raphaël TSHIMANGA Muamba2024:  Evaluation of aquifer hydraulic properties from resistivity and pumping test data in parts of Gwagwalada, Northcentral Nigeria, Journal of Groundwater Science and Engineering, 12, 309-320. doi: 10.26599/JGSE.2024.9280023
    [4] Rustadi, Darmawan I Gede Boy, Haerudin Nandi, Setiawan Agus, Suharno2022:  Groundwater exploration using integrated geophysics method in hard rock terrains in Mount Betung Western Bandar Lampung, Indonesia, Journal of Groundwater Science and Engineering, 10, 10-18. doi: 10.19637/j.cnki.2305-7068.2022.01.002
    [5] Yi-jie Zong, Li-hua Chen, Jian-jun Liu, Yue-hui Liu, Yong-xin Xu, Fu-wan Gan, Liang Xiao2022:  Analytical solutions for constant-rate test in bounded confined aquifers with non-Darcian effect, Journal of Groundwater Science and Engineering, 10, 311-321. doi: 10.19637/j.cnki.2305-7068.2022.04.001
    [6] Zhang Han, Chen Zong-yu, Tang Chang-yuan2021:  Quantifying groundwater recharge and discharge for the middle reach of Heihe River of China using isotope mass balance method, Journal of Groundwater Science and Engineering, 9, 225-232. doi: 10.19637/j.cnki.2305-7068.2021.03.005
    [7] WU Ai-min, HAO Ai-bing, GUO Hai-peng, LIU Jing-tao, ZHANG Er-yong, WANG Huang, WANG Xin-feng, WEN Xue-ru, ZHANG Cui-guang2020:  Main progress and prospect for China's hydrogeological survey, Journal of Groundwater Science and Engineering, 8, 195-209. doi: 10.19637/j.cnki.2305-7068.2020.03.001
    [8] Babak Ghazi, Rasoul Daneshfaraz, Esmaeil Jeihouni2019:  Numerical investigation of hydraulic characteristics and prediction of cavitation number in Shahid Madani Dam's Spillway, Journal of Groundwater Science and Engineering, 7, 323-332. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.003
    [9] ZENG Tu-rong2019:  Research on basic characteristics of 2H, 18O and 14C in geothermal fluid in Guangdong Province, China, Journal of Groundwater Science and Engineering, 7, 42-52. doi: 10.19637/j.cnki.2305-7068.2019.01.004
    [10] XIA Fan, SONG Hong-wei, WANG Meng, WANG Hong-liang, CHEN Yu2019:  Analysis of prospecting polymetallic metallogenic belts by comprehensive geophysical method, Journal of Groundwater Science and Engineering, 7, 237-244. doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.004
    [11] SONG Hong-wei, MU Hai-dong, XIA Fan2018:  Analyzing the differences of brackish-water in the Badain Lake by geophysical exploration method, Journal of Groundwater Science and Engineering, 6, 187-192. doi: 10.19637/j.cnki.2305-7068.2018.03.004
    [12] LI Guo-ao, YAN Lei, CHEN Zhen-he, LI Ye2017:  Determination of organic carbon in soils and sediments in an automatic method, Journal of Groundwater Science and Engineering, 5, 124-129.
    [13] LI Xiao-yuan, YUE Gao-fan, SU Ran, YU Juan2016:  Research on Pisha-sandstone’s anti-erodibility based on grey multi-level comprehensive evaluation method, Journal of Groundwater Science and Engineering, 4, 103-109.
    [14] Dana Mawlood, Jwan Mustafa2016:  Comparison between Neuman (1975) and Jacob (1946) application for analysing pumping test data of unconfined aquifer, Journal of Groundwater Science and Engineering, 4, 165-173.
    [15] NAN Tian, SHAO Jing-li, CUI Ya-li2016:  Column test-based features analysis of clogging in artificial recharge of groundwater in Beijing, Journal of Groundwater Science and Engineering, 4, 88-95.
    [16] JI Rui-li, ZHANG Ming, SU Rui, GUO Yong-hai, ZHOU Zhi-chao, LI Jie-biao2016:  Research of in-situ hydraulic test method by using double packer equipment, Journal of Groundwater Science and Engineering, 4, 41-51.
    [17] ZHANG Wei2014:  Establishment of an assessment method for site-scale suitability of CO2 geological storage, Journal of Groundwater Science and Engineering, 2, 19-25.
    [18] Do Van Binh2014:  Using Environmental Isotope Method to Study the Air Temperature Variations of the Earth, Journal of Groundwater Science and Engineering, 2, 97-102.
    [19] ZHANG Shao-cai, LIU Li-jun, LIU Zhi-gang, WANG Jun-jie, CUI Qiu-ping, WANG Juan2014:  Method for groundwater research in bedrock of mountainous area of Hebei, Journal of Groundwater Science and Engineering, 2, 97-104.
    [20] LIU Chang-Rong, HUANG Shuang-Bing, ZHANG Li-Zhong2014:  New Mine Geological Environment Impact Assessment Method, Journal of Groundwater Science and Engineering, 2, 88-96.
  • 加载中
图(4) / 表ll (7)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  6
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-26
  • 录用日期:  2025-10-10
  • 网络出版日期:  2025-11-20
  • 刊出日期:  2026-03-15

目录

    /

    返回文章
    返回