• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A state-of-the-art Fuzzy Nonlinear Additive Regression (FNAR) model for groundwater level prediction

Sepideh Zeraati Neyshabouri Abbas Khashei-Siuki Mohammad Ghasem Akbari

Neyshabouri SZ, Khashei-Siuki A, Akbari MG. 2026. A state-of-the-art Fuzzy Nonlinear Additive Regression (FNAR) model for groundwater level prediction. Journal of Groundwater Science and Engineering, 14(1): 83-99 doi:  10.26599/JGSE.2026.9280074
Citation: Neyshabouri SZ, Khashei-Siuki A, Akbari MG. 2026. A state-of-the-art Fuzzy Nonlinear Additive Regression (FNAR) model for groundwater level prediction. Journal of Groundwater Science and Engineering, 14(1): 83-99 doi:  10.26599/JGSE.2026.9280074

doi: 10.26599/JGSE.2026.9280074

A state-of-the-art Fuzzy Nonlinear Additive Regression (FNAR) model for groundwater level prediction

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Geographic and topographic context of the Birjand aquifer study area

    Notes: Location of South Khorasan Province within Iran (Top right); Political divisions of South Khorasan with Birjand Basin highlighted in pink (Bottom right); Digital elevation model (DEM) of the Birjand basin (elevation range: 1,172–2,729 m above sea level), with the unconfined aquifer extent shown in blue (Main panel). Coordinate system: WGS84/UTM Zone 40N. Scale bar and north arrow included for spatial reference.

    Figure  2.  Boxplot of monthly meteorological variables (Tave, RH, Prc, ETo) at Birjand station.

    Figure  3.  Flowchart of the Proposed FNAR Model for Estimating Monthly GWL.

    Figure  4.  Comparative analysis of monthly GWL values performance of FNAR and FLSR models

    Table  1.   Input parameter combinations for GWL estimation in model scenarios of the Birjand Plain

    Scenario number Climatic parameters
    Sc 1 Prc, Tave
    Sc 2 Prc, Tave RH
    Sc 3 Prc, Tave RH, ETo
    Notes: This table provides an overview of the input variables employed in the model scenarios for GWL estimation. These variables include key climatic factors such as average precipitation (Prc), mean air temperature (Tave), relative humidity (RH), and evapotranspiration (ETo).
    下载: 导出CSV

    Table  2.   Validation indices for FNAR model performance in monthly GWL estimation under different scenarios

    Model/Sc Month Training Testing
    RMSE (m) MAE NSE RMSE (m) MAE NSE
    FNAR/Sc1 January 1.115 0.879 0.761 1.051 0.531 0.762
    February 1.181 0.955 0.738 1.124 0.901 0.831
    March 1.310 1.074 0.665 1.361 1.101 0.710
    April 1.150 0.653 0.813 1.061 0.403 0.806
    May 1.545 1.103 0.316 1.525 0.998 0.325
    June 1.195 0.649 0.730 1.159 0.488 0.780
    July 1.182 0.633 0.737 1.061 0.403 0.806
    August 1.312 0.741 0.629 1.356 0.757 0.611
    September 1.236 1.059 0.692 1.265 1.073 0.694
    October 1.406 0.912 0.473 1.470 0.831 0.400
    November 1.449 1.259 0.614 1.421 1.124 0.656
    December 1.205 0.793 0.620 1.323 0.738 0.617
    FNAR/Sc2 January 0.423 0.353 0.966 0.433 0.342 0.806
    February 0.549 0.415 0.943 0.553 0.509 0.774
    March 0.564 0.451 0.937 0.576 0.486 0.910
    April 0.540 0.445 0.943 0.490 0.450 0.809
    May 0.941 0.794 0.826 0.991 0.817 0.841
    June 0.650 0.527 0.919 0.588 0.499 0.729
    July 0.985 0.740 0.721 0.769 0.535 0.522
    August 0.934 0.673 0.836 0.433 0.342 0.806
    September 0.813 0.793 0.493 0.618 0.529 0.702
    October 0.683 0.596 0.914 0.952 0.670 0.283
    November 0.926 0.705 0.742 0.825 0.803 0.470
    December 0.682 0.390 0.967 0.800 0.612 0.519
    FNAR/Sc3 January 0.324 0.248 0.980 0.305 0.258 0.926
    February 0.400 0.324 0.969 0.337 0.203 0.910
    March 0.457 0.402 0.821 0.586 0.522 0.719
    April 0.392 0.285 0.970 0.312 0.331 0.927
    May 0.768 0.291 0.872 0.600 0.272 0.709
    June 0.428 0.390 0.964 0.646 0.413 0.661
    July 0.526 0.450 0.948 0.488 0.368 0.815
    August 0.511 0.434 0.931 0.497 0.409 0.810
    September 0.585 0.519 0.936 0.466 0.390 0.831
    October 0.555 0.431 0.943 0.510 0.330 0.794
    November 0.460 0.349 0.957 0.310 0.333 0.925
    December 0.549 0.415 0.943 0.305 0.258 0.926
    下载: 导出CSV

    Table  3.   Validation indices for FLSR model performance in monthly GWL estimation under different scenarios

    Regression Model/Sc Month Training Testing
    RMSE/m MAE/m NSE RMSE/m MAE/m NSE
    FLSR/Sc1 January 2.679 2.142 −0.353 3.632 3.402 −1.890
    February 2.568 2.083 −0.413 3.528 3.357 −1.841
    March 2.674 2.157 −0.371 3.524 3.301 −1.799
    April 2.703 2.175 −0.384 3.560 3.393 −1.530
    May 3.113 2.484 −0.901 3.650 3.377 −1.450
    June 3.123 2.438 −0.845 3.701 3.523 −1.766
    July 3.130 2.483 −0.841 3.939 3.943 −2.112
    August 3.046 2.426 −0.736 3.917 3.733 −2.042
    September 3.194 2.832 −0.966 3.823 3.775 −2.131
    October 2.891 2.339 −0.522 3.810 3.723 −2.086
    November 2.770 2.250 −0.408 3.665 3.487 −1.409
    December 3.079 2.459 −0.382 3.761 3.587 −1.990
    FLSR/Sc2 January 2.224 1.846 0.051 2.127 2.724 −1.489
    February 2.667 2.177 −0.331 2.979 2.836 −1.842
    March 3.507 2.775 −1.394 2.750 2.301 −1.373
    April 2.638 2.237 −0.308 3.013 1.725 −1.610
    May 3.276 2.642 −1.105 2.853 2.625 −1.449
    June 3.126 2.539 −0.848 3.032 2.917 −1.615
    July 2.827 2.258 −0.513 3.204 3.041 −1.954
    August 3.330 2.663 −1.232 2.861 2.799 −1.540
    September 3.024 2.376 −0.633 3.406 3.587 −1.712
    October 3.139 2.546 −0.795 2.924 2.757 −1.647
    November 2.874 2.429 −0.408 2.861 2.799 −1.540
    December 2.741 2.272 −0.416 2.914 2.796 −1.766
    FLSR/Sc3 January 2.296 1.229 −0.215 2.343 1.516 −0.322
    February 2.308 1.219 −0.103 2.350 1.372 −0.240
    March 2.340 1.121 0.002 2.609 2.279 −1.028
    April 2.321 1.272 0.007 2.611 1.399 −1.019
    May 3.244 2.115 −1.065 3.770 2.543 −1.244
    June 3.356 2.430 −1.129 3.843 2.716 −1.400
    July 2.554 1.352 −0.226 2.301 1.279 −0.288
    August 2.798 1.566 −0.071 2.415 1.600 −0.139
    September 2.941 1.682 −0.638 2.865 1.503 −1.050
    October 3.094 2.131 −0.926 3.722 2.453 −1.132
    November 3.781 2.109 −1.784 3.921 2.742 −1.521
    December 2.542 1.440 −0.518 2.890 1.600 −1.142
    下载: 导出CSV

    Table  4.   Validation indices for FLSR model performance in monthly GWL estimation under different Scenarios

    Model/Sc Month Training Testing
    RMSE (m) MAE (m) NSE KGE PBIAS (%) RMSE (m) MAE (m) NSE KGE PBIAS (%)
    FLSR/Sc1 January 2.679 2.142 −0.353 −0.312 9.215 3.632 3.402 −1.890 −1.650 15.32
    February 2.568 2.083 −0.413 −0.372 9.512 3.528 3.357 −1.841 −1.610 15.84
    March 2.674 2.157 −0.371 −0.330 9.318 3.524 3.301 −1.799 −1.572 15.11
    April 2.703 2.175 −0.384 −0.343 9.412 3.560 3.393 −1.530 −1.312 13.95
    May 3.113 2.484 −0.901 −0.861 12.32 3.650 3.377 −1.450 −1.210 14.52
    June 3.123 2.438 −0.845 −0.805 11.89 3.701 3.523 −1.766 −1.532 15.67
    July 3.130 2.483 −0.841 −0.801 11.85 3.939 3.943 −2.112 −1.872 18.24
    August 3.046 2.426 −0.736 −0.696 11.21 3.917 3.733 −2.042 −1.802 17.67
    September 3.194 2.832 −0.966 −0.926 12.85 3.823 3.775 −2.131 −1.891 18.43
    October 2.891 2.339 −0.522 −0.482 10.15 3.810 3.723 −2.086 −1.846 17.97
    November 2.770 2.250 −0.408 −0.367 9.472 3.665 3.487 −1.409 −1.178 13.45
    December 3.079 2.459 −0.382 −0.341 9.392 3.761 3.587 −1.990 −1.750 16.32
    FLSR/Sc2 January 2.224 1.846 0.051 0.089 5.123 2.127 2.724 −1.489 −1.212 10.45
    February 2.667 2.177 −0.331 −0.293 8.156 2.979 2.836 −1.842 −1.598 12.67
    March 3.507 2.775 −1.394 −1.354 14.67 2.750 2.301 −1.373 −1.132 10.15
    April 2.638 2.237 −0.308 −0.270 7.956 3.013 1.725 −1.610 −1.372 11.32
    May 3.276 2.642 −1.105 −1.065 12.32 2.853 2.625 −1.449 −1.208 10.86
    June 3.126 2.539 −0.848 −0.808 11.21 3.032 2.917 −1.615 −1.374 11.45
    July 2.827 2.258 −0.513 −0.473 9.856 3.204 3.041 −1.954 −1.712 13.45
    August 3.330 2.663 −1.232 −1.192 13.45 2.861 2.799 −1.540 −1.298 10.67
    September 3.024 2.376 −0.633 −0.593 10.46 3.406 3.587 −1.712 −1.470 12.15
    October 3.139 2.546 −0.795 −0.755 10.85 2.924 2.757 −1.647 −1.405 11.67
    November 2.874 2.429 −0.408 −0.368 9.156 2.861 2.799 −1.540 −1.298 10.67
    December 2.741 2.272 −0.416 −0.376 9.256 2.914 2.796 −1.766 −1.524 12.32
    FLSR/Sc3 January 2.296 1.229 −0.215 −0.178 3.215 2.343 1.516 −0.322 −0.280 4.320
    February 2.308 1.219 −0.103 −0.068 2.856 2.350 1.372 −0.240 −0.202 3.972
    March 2.340 1.121 0.002 0.038 2.156 2.609 2.279 −1.028 −0.788 8.456
    April 2.321 1.272 0.007 0.043 2.312 2.611 1.399 −1.019 −0.779 8.320
    May 3.244 2.115 −1.065 −1.025 8.856 3.770 2.543 −1.244 −1.004 9.672
    June 3.356 2.430 −1.129 −1.089 9.320 3.843 2.716 −1.400 −1.160 10.46
    July 2.554 1.352 −0.226 −0.188 3.456 2.301 1.279 −0.288 −0.248 4.120
    August 2.798 1.566 −0.071 −0.035 2.712 2.415 1.600 −0.139 −0.103 3.456
    September 2.941 1.682 −0.638 −0.598 6.156 2.865 1.503 −1.050 −0.810 8.672
    October 3.094 2.131 −0.926 −0.886 7.856 3.722 2.453 −1.132 −0.892 9.320
    November 3.781 2.109 −1.784 −1.744 12.46 3.921 2.742 −1.521 −1.281 10.97
    December 2.542 1.440 −0.518 −0.478 5.856 2.890 1.600 −1.142 −0.902 9.120
    下载: 导出CSV
  • Adnan RM, Dai HL, Mostafa RR, et al. 2023. Modelling groundwater level fluctuations by ELM merged advanced metaheuristic algorithms using hydroclimatic data. Geocarto International, 38(1): 2158951. DOI:  10.1080/10106049.2022.2158951.
    Ahmadi A, Olyaei M, Heydari Z, et al. 2022. Groundwater level modeling with machine learning: A systematic review and meta-analysis. Water, 14(6): 949. DOI:  10.3390/w14060949.
    Ahmadifar R, Safavi HR, Mirabbasi R, et al. 2025. A hybrid vine copula-fuzzy model for groundwater level simulation under uncertainty. Environmental Monitoring and Assessment, 197(4): 403. DOI:  10.1007/s10661-025-13856-3.
    Ang YK, Talei A, Zahidi I, et al. 2023. Past, present, and future of using neuro-fuzzy systems for hydrological modeling and forecasting. Hydrology, 10(2): 36. DOI:  10.3390/hydrology10020036.
    Aryafar A, Khosravi V, Karami, S. 2020. Groundwater quality assessment of Birjand plain aquifer using kriging estimation and sequential Gaussian simulation methods. Environmental Earth Sciences, 79: 1−21. DOI:  10.1007/s12665-020-08905-8.
    Asadolahi M, Akbari MG, Hesamian G, et al. 2021. A robust support vector regression with exact predictors and fuzzy responses. International Journal of Approximate Reasoning, 132: 206−225. DOI:  10.1016/j.ijar.2021.02.006.
    Bardossy A, Duckstein L. 2022. Fuzzy rule-based modeling with applications to geophysical, biological, and engineering systems. CRC Press, London, United Kingdom. DOI:  10.1201/9780138755133
    Bhadani V, Singh A, Kumar, V, et al. 2024. Nature-inspired optimal tuning of input membership functions of a fuzzy inference system for groundwater level prediction. Environmental Modelling and Software, 175: 105995. DOI:  10.1016/j.envsoft.2024.105995.
    Bogardi I, Bardossy A, Duckstein L. 1983. Regional management of an aquifer for mining under fuzzy environmental objectives. Water Resources Research, 19(6): 1394−1402. DOI:  10.1029/WR019i006p01394.
    Boo KBW, El-Shafie A, Othman F, et al. 2024. Groundwater level forecasting using ensemble coactive neuro-fuzzy inference system. Science of The Total Environment, 912: 168760. DOI:  10.1016/j.scitotenv.2023.168760.
    Borzì I. 2025. Modeling groundwater resources in data-scarce regions for sustainable management: Methodologies and limits. Hydrology, 12(1): 2306−5338. DOI:  10.3390/hydrology12010011.
    Condon LE, Kollet S, Bierkens MF, et al. 2021. Global groundwater modeling and monitoring: Opportunities and challenges. Water Resources Research, 57(12): e2020WR029500. DOI:  10.1029/2020WR029500.
    Feng F, Ghorbani H, Radwan AE. 2024. Predicting groundwater level using traditional and deep machine learning algorithms. Frontiers in Environmental Science, 12: 1291327. DOI:  10.3389/fenvs.2024.1291327.
    Hoogesteger J. 2022. Regulating agricultural groundwater use in arid and semi-arid regions of the Global South: Challenges and socio-environmental impacts. Current Opinion in Environmental Science and Health, 100341. DOI:  10.1016/j.coesh.2022.100341
    Hu H, Yang K, Sharma A, et al. 2020. Assessment of water and energy scarcity, security and sustainability into the future for the Three Gorges Reservoir using an ensemble of RCMs. Journal of Hydrology, 586: 124893. DOI:  10.1016/j.jhydrol.2020.124893.
    Kambalimath S, Deka PC. 2020. A basic review of fuzzy logic applications in hydrology and water resources. Applied Water Science, 10(8): 1−14. DOI:  10.1007/s13201-020-01276-2.
    Koonce JE. 2016. Water balance and moisture dynamics of an arid and semi-arid soil: A weighing lysimeter and field study. DOI:  10.34917/9112095
    Kuang X, Liu J, Scanlon BR, et al. 2024. The changing nature of groundwater in the global water cycle. Science, 383(6686): eadf0630. DOI:  10.1126/science.adf0630.
    Lall U, Josset L, Russo T. 2020. A snapshot of the world's groundwater challenges. Annual Review of Environment and Resources, 45(1): 171−194. DOI:  10.1146/annurev-environ-102017-025800.
    Loucks DP. 2023. Hydroinformatics: A review and future outlook. Cambridge Prisms: Water, 1: e10. DOI:  10.1017/wat.2023.10.
    Malakar P, Bhanja SN, Dash AA, et al. 2022. Delineating variabilities of groundwater level prediction across the agriculturally intensive transboundary aquifers of South Asia. ACS ES& T Water, 3(6): 1547−1560. DOI: 10.1021/acsestwater. 2c00220.
    Moges E, Demissie Y, Larsen L, et al. 2021. Sources of hydrological model uncertainties and advances in their analysis. Water, 13(1): 28. DOI:  10.3390/w13010028.
    NavaleV, Mhaske S. 2023. Artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) model for Forecasting groundwater level in the Pravara River Basin, India. Modeling Earth Systems and Environment, 9(2): 2663−2676. DOI:  10.1007/s40808-022-01639-5.
    Rahimi M, Ebrahimi H. 2023. Data-driven driven to underground water level using artificial intelligence hybrid algorithms. Scientific Reports, 13(1): 10359. DOI:  10.1038/s41598-023-35255-9.
    Ramezani N. 2022. Modern statistical modeling in machine learning and big data analytics: Statistical models for continuous and categorical variables. In research anthology on machine learning techniques, methods, and applications (pp. 90−106). IGI Global. DOI:  10.4018/978-1-6684-6291-1.ch007.
    Rashidi GH, Katibeh H, Maleki A. 2024. Forecasting groundwater fluctuations caused by earthquakes using fuzzy logic and AHP Method: A case study from Iran. Earth Science Informatics, 17(3): 2143−2158. DOI:  10.1007/s12145-024-01264-z.
    Saikrishnamacharyulu I, Mohanta NR, Kumar MH, et al. 2022. Simulation of water table depth using a hybrid CANFIS model: A Case study. In Intelligent System Design: Proceedings of INDIA 2022 (pp. 319−328). Singapore: Springer Nature Singapore. DOI:  10.1007/978-981-19-4863-3_30.
    Samani S, Vadiati M, Azizi F, et al. 2022. Groundwater level simulation using soft computing methods with emphasis on major meteorological components. Water Resources Management, 36(10): 3627−3647. DOI:  10.1007/s11269-022-03217-x.
    Samantaray S, Biswakalyani C, Singh DK, et al. 2022. Prediction of groundwater fluctuation based on a hybrid ANFIS-GWO approach in an arid Watershed, India. Soft Computing, 26(11): 5251−5273. DOI:  10.1007/s00500-022-07097-6.
    Samantaray S, Sahoo A, Baliarsingh F. 2024. Groundwater level prediction using an improved SVR model integrated with hybrid particle swarm optimization and firefly algorithm. Cleaner Water, 1: 100003. DOI:  10.1016/j.clwat.2024.100003.
    Sun J, Hu L, Li D, et al. 2022. Data-driven models for accurate groundwater level prediction and their practical significance in groundwater management. Journal of Hydrology, 608: 127630. ‏ DOI:  10.1016/j.jhydrol.2022.127630
    Tao H, Hameed MM, Marhoon HA, et al. 2022. Groundwater level prediction using machine learning models: A comprehensive review. Neurocomputing, 489: 271−308. DOI:  10.1016/j.neucom.2022.03.014.
    Theodoridou PG, Varouchakis EA, Karatzas GP. 2017. Spatial analysis of groundwater levels using fuzzy logic and geostatistical tools. Journal of Hydrology, 555: 242−252. DOI:  10.1016/j.jhydrol.2017.10.027.
    Varouchakis EA, Theodoridou PG, Karatzas GP. 2019. Spatiotemporal geostatistical modeling of groundwater levels under a Bayesian framework using means of physical background. Journal of Hydrology, 575: 487−498. DOI:  10.1016/j.jhydrol.2019.05.055.
    Yang X, Zhang Z. 2022. A CNN-LSTM model based on a meta-learning algorithm to predict groundwater level in the middle and lower reaches of the Heihe River, China. Water, 14(15): 2377. DOI:  10.3390/w14152377.
    Zaresefat M, Derakhshani R. 2023. Revolutionizing groundwater management with hybrid AI models: A practical review. Water, 15(9): 1750. DOI:  10.3390/w15091750.
    Zarinmehr H, Tizro AT, Fryar AE, et al. 2022. Prediction of groundwater level variations based on gravity recovery and climate experiment (GRACE) satellite data and a time-series analysis: a case study in the Lake Urmia basin, Iran. Environmental Earth Sciences, 81(6): 180. DOI:  10.1007/s12665-022-10296-x.
    Zowam FJ, Milewski AM. 2024. Groundwater level prediction using machine learning and geostatistical interpolation models. Water, 16(19): 2771. DOI:  10.3390/w16192771.
  • [1] Su-duan Hu, Wen-da Liu, Jun-jian Liu, Jiang-Yulong Wang, Jun-jie Yang, Zhao-yi Li, Zhi-yang Tang, Guo-qiang Wang, Tian-cun Yu2025:  Evaluation of water quality and water resources carrying capacity using a varying fuzzy pattern recognition model: A case study of small watersheds in Hilly Region, Journal of Groundwater Science and Engineering, 13, 386-405. doi: 10.26599/JGSE.2025.9280061
    [2] Ali Al-Maktoumi2025:  A review of factors affecting the performance and impact of managed aquifer recharge projects: Insights from arid regions, Journal of Groundwater Science and Engineering, 13, 312-340. doi: 10.26599/JGSE.2025.9280057
    [3] Md. Hossain Ali2025:  Development of a model to estimate groundwater recharge, Journal of Groundwater Science and Engineering, 13, 406-422. doi: 10.26599/JGSE.2025.9280062
    [4] Sajjad Moradi Nazarpoor, Mohsen Rezaei, Hadi Jafari, Yazdan Mohebi, Reza Mirbageri2025:  Introducing a new geostatistical approach to classify groundwater samples based on Stiff diagram: Case study of Chahardoly aquifer, west of Iran, Journal of Groundwater Science and Engineering, 13, 423-433. doi: 10.26599/JGSE.2025.9280063
    [5] ILUNGA Nyembwe, AMADI Akobundu Nwanosike, Gilbert NDATIMANA, Nelson OKOT, Raphaël TSHIMANGA Muamba2024:  Evaluation of aquifer hydraulic properties from resistivity and pumping test data in parts of Gwagwalada, Northcentral Nigeria, Journal of Groundwater Science and Engineering, 12, 309-320. doi: 10.26599/JGSE.2024.9280023
    [6] Li-qiang Ge, Yan-pei Cheng, Qing Yi, Xue-ru Wen, Hua Dong, Kun Liu, Jian-kang Zhang2024:  Research on groundwater ecological environment mapping based on ecological service function: A case study of five Central Asian countries and neighboring regions of China, Journal of Groundwater Science and Engineering, 12, 339-346. doi: 10.26599/JGSE.2024.9280025
    [7] Jun Zhang, Rong-zhe Hou, Kun Yu, Jia-qiu Dong, Li-he Yin2024:  Impact of water table on hierarchically nested groundwater flow system, Journal of Groundwater Science and Engineering, 12, 119-131. doi: 10.26599/JGSE.2024.9280010
    [8] Jun Liu, Yan-pei Cheng, Feng-e Zhang, Xue-ru Wen, Liu Yang2023:  Research hotspots and trends of groundwater and ecology studies: Based on a bibliometric approach, Journal of Groundwater Science and Engineering, 11, 20-36. doi: 10.26599/JGSE.2023.9280003
    [9] Niway Wondesen Fikade, Molla Dagnachew Daniel, Lohani Tarun Kumar2022:  Holistic approach of GIS based Multi-Criteria Decision Analysis (MCDA) and WetSpass models to evaluate groundwater potential in Gelana watershed of Ethiopia, Journal of Groundwater Science and Engineering, 10, 138-152. doi: 10.19637/j.cnki.2305-7068.2022.02.004
    [10] GUI Chun-lei, WANG Zhen-xing, MA Rong, ZUO Xue-feng2021:  Aquifer hydraulic conductivity prediction via coupling model of MCMC-ANN, Journal of Groundwater Science and Engineering, 9, 1-11. doi: 10.19637/j.cnki.2305-7068.2021.01.001
    [11] Qaisar Mehmood, Muhammad Arshad, Muhammad Rizwan, Shanawar Hamid, Waqas Mehmood, Muhammad Ansir Muneer, Muhammad Irfan, Lubna Anjum2020:  Integration of geoelectric and hydrochemical approaches for delineation of groundwater potential zones in alluvial aquifer, Journal of Groundwater Science and Engineering, 8, 366-380. doi: 10.19637/j.cnki.2305-7068.2020.04.007
    [12] Yacob T Tesfaldet, Avirut Puttiwongrak, Tanwa Arpornthip2020:  Spatial and temporal variation of groundwater recharge in shallow aquifer in the Thepkasattri of Phuket, Thailand, Journal of Groundwater Science and Engineering, 8, 10-19. doi: 10.19637/j.cnki.2305-7068.2020.01.002
    [13] Bahrami Mehdi, Khaksar Elmira, Khaksar Elahe2020:  Spatial variation assessment of groundwater quality using multivariate statistical analysis(Case Study: Fasa Plain, Iran), Journal of Groundwater Science and Engineering, 8, 230-243. doi: 10.19637/j.cnki.2305-7068.2020.03.004
    [14] Abdelhakim LAHJOUJ, Abdellah EL HMAIDI, Karima BOUHAFA2020:  Spatial and statistical assessment of nitrate contamination in groundwater: Case of Sais Basin, Morocco, Journal of Groundwater Science and Engineering, 8, 143-157. doi: 10.19637/j.cnki.2305-7068.2020.02.006
    [15] A Muthamilselvan, N Rajasekaran, R Suresh2019:  Mapping of hard rock aquifer system and artificial recharge zonation through remote sensing and GIS approach in parts of Perambalur District of Tamil Nadu, India, Journal of Groundwater Science and Engineering, 7, 264-281. doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.007
    [16] SOSI Benjamin, BARONGO Justus, GETABU Albert, MAOBE Samson2019:  Electrical-hydraulic conductivity model for a weathered-fractured aquifer system of Olbanita, Lower Baringo Basin, Kenya Rift, Journal of Groundwater Science and Engineering, 7, 360-372. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.007
    [17] YU Kai-ning, LI Jian, LI Hui, CHEN Kang, LV Bing-xu, ZHAO Long-hui2016:  Statistical characteristics of heavy metals content in groundwater and their interrelationships in a certain antimony mine area, Journal of Groundwater Science and Engineering, 4, 284-292.
    [18] Dana Mawlood, Jwan Mustafa2016:  Comparison between Neuman (1975) and Jacob (1946) application for analysing pumping test data of unconfined aquifer, Journal of Groundwater Science and Engineering, 4, 165-173.
    [19] LIU Jun-qiu, XIE Xin-min2016:  Numerical simulation of groundwater and early warnings from the simulated dynamic evolution trend in the plain area of Shenyang, Liaoning Province (P.R. China), Journal of Groundwater Science and Engineering, 4, 367-376.
    [20] 2013:  The Study of Statistical Damage Constitutive Models of Rock and Its Parameters Based on Lade-Duncan Criterion, Journal of Groundwater Science and Engineering, 1, 74-79.
  • 加载中
图(4) / 表ll (4)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  6
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-15
  • 录用日期:  2025-11-16
  • 网络出版日期:  2026-01-15
  • 刊出日期:  2026-03-15

目录

    /

    返回文章
    返回