• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ EBSCO Scopus GeoRef AJ CNKI
Advanced Search
Volume 11 Issue 2
Jun.  2023
Turn off MathJax
Article Contents
Raju BA, Rao PV, Subrahmanyam M. 2023. Estimating aquifer transmissivity using Dar-Zarrouk parameters to delineate groundwater potential zones in Alluri Seetharama Raju District, Andhra Pradesh, India. Journal of Groundwater Science and Engineering, 11(2): 116-132 doi:  10.26599/JGSE.2023.9280011
Citation: Raju BA, Rao PV, Subrahmanyam M. 2023. Estimating aquifer transmissivity using Dar-Zarrouk parameters to delineate groundwater potential zones in Alluri Seetharama Raju District, Andhra Pradesh, India. Journal of Groundwater Science and Engineering, 11(2): 116-132 doi:  10.26599/JGSE.2023.9280011

Estimating aquifer transmissivity using Dar-Zarrouk parameters to delineate groundwater potential zones in Alluri Seetharama Raju District, Andhra Pradesh, India

doi: 10.26599/JGSE.2023.9280011
More Information
  • Corresponding author: anand.bakuru@gmail.com
  • Received Date: 2022-10-20
  • Accepted Date: 2023-03-30
  • Available Online: 2023-06-15
  • Publish Date: 2023-06-30
  • This study aimed to explore groundwater potential zones in the EGMB of Alluri Seetharama Raju district, Andhra Pradesh, India, for drinking and agriculture purposes. To achieve this goal, 72 Vertical Electrical Soundings (VES) were conducted using the Schlumberger electrode configuration. The resistivity sounding data were analyzed to determine the aquifer thickness, basement depth, Dar-Zarrouk parameters, and aquifer transmissivity. Spatial distribution maps were generated for these parameters to understand the subsurface formation. The analysis revealed a linear groundwater potential zone (8.46 km2) in the eastern part of the study area, extending in the NNE-SSW direction for 9.6 km. Six VES locations (P24, P27, P29, P30, P33, and P38) in this zone exhibit good potential (>30 m aquifer thickness), while the three VES locations (OP19, P5, and P46) in the central region are recommended for drilling bore wells. Additionally, moderate aquifer thickness (20–30 m) are identified in other VES locations (OP14, OP20, P4, P10, P12, P13, P15, P17, P18, P31, P46, and P50) along streams in the western and central part of the area, which can yield reasonable quantities of water. This information is useful for groundwater exploration and watershed management to meet the demands of tribal population in the study area.
  • 加载中
  • Ammar AI, Kruse SE. 2016. Resistivity soundings and VLF profiles for siting groundwater wells in a fractured basement aquifer in the Arabian shield, Saudi Arabia. Journal of African Earth Sciences, 116: 5667. DOI: 10.1016/j.jafrearsci.2015.12.020.
    Anandagajapathi RB, Venkateswara RP, Subrahmanyam M. 2020. Integration of GIS and remote sensing in groundwater investigations: A case study from Visakhapatnam District, India. Journal of India Geophysics Union, 24(5): 50−63.
    Ankidawa B, Ishaku J, Hassan A. 2019. Estimation of aquifer transmissivity using Dar-Zarrouk parameters derived from resistivity soundings on the floodplain of river Dadin kowa, Gombe state, Northeastern Nigeria. Computer Engineering Physics Model, 1(4): 36−52. DOI: 10.22115/cepm.2018.129584.1024.
    Anudu GK, Onuba LN, Ufondu LS. 2011. Geo-electric sounding for groundwater exploration in the crystalline basement terrain around onipe and adjoining areas, Southwestern Nigeria. Journal of Applied Technology in Environmental Sanitation, 1: 343−354.
    Atakpo EA. 2013. Aquifer vulnerability investigation using geo-electric method in parts of sapele local government area of delta state, Nigeria. Nigerian Journal of Basic Application Science, 21(1): 11−19. DOI: 10.4314/njbas.v21i1.2.
    Awni T, Batayneh. 2013. The estimation and significance of Dar-Zarrouk parameters in the exploration of quality affecting the Gulf of Aqaba coastal aquifer systems. Journal of Coast Conservation, 17: 623−635. DOI: 10.1007/S11852-013-02614.
    Ayolabi EA, Folorunso AF, Oloruntola MO. 2010. Constraining causes of structural failure using electrical resistivity tomography (ERT): A case study of Lagos, Southwestern, Nigeria. Mineral Wealth, 156(4): 7−18. DOI: 10.3997/2214-4609-pdb.175.SAGEEP109.
    Bobachev A. 2003. Resistivity sounding interpretation IPI2WIN: Version 3.0. 1, A7. 01. 03. Moscow State University.
    CGWB. 2019. Groundwater brochure Visakhapatnam district, Andhra Pradesh, central ground water board, Ministry of water resources, government of India.
    Danso SY, Ma Y. 2023. Geospatial techniques for groundwater potential zones delineation in a coastal municipality, Ghana. The Egyptian Journal of Remote Sensing and Space Science, 26(1): 75−84. DOI: https://doi.org/10.1016/j.ejrs.2022.12.004.
    Deng QJ, Wei LI, Zhu QJ, et al. 2020. An analysis of the characteristics of water storage structure and the practice of groundwater exploration in the basalt area of ​​Zhangbei County, Bashang, Hebei Province. Geological Bulletin of China, 39(12): 1899−1907.
    Dor N, Syafalni S, Abustan I, et al. 2011. Verification of surface-groundwater connectivity in an irrigation canal using geophysical, water balance and stable isotope approaches. Water Resource Manage, 25: 2837–2853.
    Elango L. 2014. Hydraulic conductivity issues, determinations and application. Croatia Environmental Processes, 1: 613−616. DOI: 10.1007/s40710-000337.
    Fashae OA, Tijani MN, Talabi AO, et al. 2014. Delineation of groundwater potential zones in the crystalline basement terrain of SW-Nigeria: An integrated GIS and remote sensing approach. Journal of Applied Water Science, 4: 19–38.
    GSI. 2001. District resource map, geological survey of India. Visakhapatnam district, Andhra Pradesh, India.
    Gumilar UN, Andi AN, Pulung AP, et al. 2023. Analysis of groundwater potential zones using Dar-Zarrouk parameters in Pangkalpinang city, Indonesia. Environment, Development and Sustainability, 25: 1876−1898. DOI: 10.1007/s10668-021-02103-7.
    Gupta G, Patil SN, Padmane ST, et al. 2015. Geoelectric investigation to delineate groundwater potential and recharge zones in Suki river basin, north Maharashtra. Journal of Earth System Science, 124(7): 1487−1501. DOI: 10.1007/s12040-015-0615-4.
    Gupta G, Vinit CE, Saumen M. 2012. Geo-electrical investigation for potential groundwater zones in parts of Ratnagiri and Kolhapur districts, Maharashtra. Journal of India Geophysics Union, 9(1): 27−38.
    Hamzah U, Samudin AR, Malim EP. 2007. Groundwater investigation in Kuala Selang or using vertical electric sounding (VES) surveys. Environmental Geology, 51: 1349–1359.
    Heigold PC, Gilkeson RH, Cartwright K, et al. 1979. Aquifer transmissivity from surficial electrical methods. Ground Water, 17(4): 338−345. DOI: 10.1111/J.1745-6584.1979.Tb03326.X.
    Kang X, Shi X, Deng Y, et al. 2018. Coupled hydro-geophysical inversion of DNAPL source zone architecture and permeability field in a 3D heterogeneous sandbox by assimilation time-lapse cross-borehole electrical resistivity data via ensemble kalman filtering. Journal of Hydrology, 567: 149−164. DOI: 10.1016/J.JhydrOl.2018.10.019.
    Kumar TJR, Balasubramanian A, Kumar RS, et al. 2016. Assessment of groundwater potential based on aquifer properties of hard rock terrain in the Chittar–Uppodai watershed, Tamil Nadu, India. Applied Water Science, 6: 179−186. DOI: 10.1007/s13201-014-0216-4.
    Loke MH, Chambers JE, Rucker DF, et al. 2013. Recent developments in the direct-current geo-electrical imaging method. Journal of Applied Geophysics, 95: 135−156. DOI: 10.1016/J.Japp.geo.2013.02.017.
    Maillet R. 1947. The fundamental equations of electrical prospecting. Geophysics, 12(4): 529−556. DOI: 10.1190/1.1437342.
    Maja B, Andrej S, Ivan KC, et al. 2020. Characterization of aquifers in metamorphic rocks by combined use of electrical resistivity tomography and monitoring of spring hydrodynamics. Geosciences, 10: 137. DOI: 10.3390/Geosciences10040137.
    Obiora DN, Ibuot JC, George JN. 2016. Evaluation of aquifer potential, geo-electric and hydraulic parameters in Ezza north, southeastern Nigeria, using geo-electric sounding. International Journal of Environmental Science and Technology, 13: 435−444. DOI: 10.1007/S13762-015-0886-Y.
    Offodile MI. 1983. The occurrence and exploitation of groundwater in Nigeria basement complex. Journal of Mining Geology, 20(3): 131−146.
    Oladapo MI, Akintorinwa OJ. 2007. Hydrogeophysical study of Ogbese southwestern Nigeria. Global Journal of Pure Applied Science, 13(1): 55–61.
    Olasehinde, PI, Bayewu OO. 2011. Evaluation of electrical resistivity anisotropy in Geological mapping: A case study of Odo area, west central Nigeria. African Journal of Environmental Science and Technology, 5(7): 553−566. DOI: 10.4314/ajest.v5i7.72045.
    Orellana E, Mooney HM. 1966. Master curves for Schlumberger arrangement. Madrid, P. 34.
    Oteri AU. 1981. Geo-electric investigation of saline contamination of chalk aquifer by mine drainage water at Tilmanstone, England. Geoexploration, 19(3): 179–192.
    Rustadi, Darmawan IGB, Haerudin N, et al. 2022. Groundwater exploration using integrated geophysics method in hard rock terrains in Mount Betung Western Bandar Lampung, Indonesia. Journal of Groundwater Science and Engineering, 10(1): 10−18. DOI: 10.19637/j.cnki.2305-7068.2022.01.002.
    Sathiyamoorthy M, Madhavi G. 2018. Delineation of groundwater potential and recharge zone using electrical resistivity method around Veeranam Tank, Tamil Nadu, India. Journal of the Institution of Engineers (India), Series A 99.4 (2018): 637-645.
    Seker UE, Efe S. 2023. Comparative economic analysis of air conditioning system with groundwater source heat pump in general-purpose buildings: A case study for kayseri. Renewable Energy, 204: 372−381.
    Shailaja G, Gupta G, Suneetha N, et al. 2019. Assessment of aquifer zones and its protection via second-order geo-electric indices in parts of drought-prone region of deccan volcanic province, Maharashtra, India. Journal of Earth System Science, 128: 78.
    Singh S, Gautam PK, Kumar P, et al. 2021. Delineating the characteristics of saline water intrusion in the coastal aquifers of Tamil Nadu, India by analyzing the Dar-Zarrouk parameters. Contributions to Geophysics and Geodesy, 51(2): 141-163.
    Singh CL, Singh SN. 1970. Some geo-electrical investigations for potential groundwater in part of Azamgrah area of UP. Pure and Applied Geophysics, 82: 270–85.
    Sitharam TG, Anbazhagan P, Ganesha Raj K. 2006. Use of remote sensing and seismotectonic parameters for seismic hazard analysis of Bangalore. Natural Hazards and Earth System Science, 6: 927–939.
    Sitharam TG, Anbazhagan P. 2007. Seismic hazard analysis for the Bangalore region. Natural Hazards, 40: 261−278.
    Sri N, Singhal DC. 1981. Estimation of aquifer transmissivity from Dar-Zarrouk parameters in porous media. Journal of Hydrology, 50: 393−399. DOI: 10.1016/0022-1694(81)90082-2.
    Subramanian TS, Marykutty A. 2019. Computation of aquifer parameters using geo-electrical techniques for the north Chennai coastal aquifer. Indian Journal of Geo Marine Sciences, 48: 1298-1306. https://doi.org/10.1007/s10668-021-02103-7
    Subrahmanyam M, Venkateswara Rao P. 2017a. A note on the advantages of converting schlumberger VES data into radial dipole VES data. Journal of Geophysics, 28(4): 248−257.
    Subrahmanyam M, Venkateswara RP. 2017b. Delineation of groundwater potential zones using geo-electrical surveys in SSW part of Yeleru river basin, East Godavari District, Andhra Pradesh. Journal of Indian Geophysics Union, 21(6): 465−473.
    Suneetha NG, Gupta G, Shailaja G, et al. 2021. Spatial behavior of the Dar-Zarrouk parameters for exploration and differentiation of water bodies aquifers in parts of konkan coast of Maharashtra, India. Journal of Coastal Conservation, 25: 11. DOI: 10.1007/S11852-021-00807-6.
    Todd KD. 1980. Groundwater Hydrology, Third Ed. New York, John Wiley and Sons: 636.
    Venkateswara RP, Subrahmanyam M, Ratnakar D. 2019a. Performance evaluation of different interpretation techniques of vertical electrical sounding data. Journal of Indian Geophysics Union, 23(1): 55−68.
    Venkateswara RP, Subrahmanyam M, Ramdas P. 2019b. Delineation of groundwater potential zones in hard rock basement terrains of EastGodavari District, Andhra Pradesh, India. Journal of Indian Geophysics Union, 23(5): 408−419.
    Venkateswara RP, Mangalampalli S, Bakuru AR. 2021. Groundwater exploration in hard rock terrains of East Godavari District, Andhra Pradesh, India using AHP and WIO analyses together with geoelectrical surveys. AIMS Geosciences, 7(2): 243−266. DOI: 10.3934/geosci.2021015.
    Venkateswara RP, Mangalampalli S, Bakuru AR. 2022. Investigation of groundwater potential zones in hard rock terrains along EGMB, India, using remote sensing, geoelectrical and hydrological parameters. Acta Geophysica,
    Zohdy AAR. 1965. The auxiliary point method of electrical sounding interpretation and its relationship to the Dar-Zarrouk parameters. Geophysics, 30: 644−660. DOI: 10.1190/1.1439636.
    Zohdy AAR, Eaton GP, Mabey DR. 1974. Application of surface geophysics to groundwater investigations, US Geology Survey. Technology Water Resource Investigation: 116.
    Zohdy AAR. 1989. A new method for the automatic interpretation of Schlumberger and Wenner sounding curves. Geophysics, 54: 245−253. DOI: 10.1190/1.1442648.
  • 2305-7068/© Journal of Groundwater Science and Engineering Editorial Office. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)

  • Relative Articles

    [1] Stephen Pitchaimani V, Narayanan MSS, Abishek RS, Aswin SK, Jerin Joe RJ, 2024: Delineation of groundwater potential zones using remote sensing and Geographic Information Systems (GIS) in Kadaladi region, Southern India, Journal of Groundwater Science and Engineering, 12, 147-160.  doi: 10.26599/JGSE.2024.9280012
    [2] Temesgen Mekuriaw Manderso, Yitbarek Andualem Mekonnen, Tadege Aragaw Worku, 2023: Application of GIS based analytical hierarchy process and multicriteria decision analysis methods to identify groundwater potential zones in Jedeb Watershed, Ethiopia, Journal of Groundwater Science and Engineering, 11, 221-236.  doi: 10.26599/JGSE.2023.9280019
    [3] Edmealem Temesgen, Demelash Wendmagegnehu Goshime, Destaw Akili, 2023: Determination of groundwater potential distribution in Kulfo-Hare watershed through integration of GIS, remote sensing, and AHP in Southern Ethiopia, Journal of Groundwater Science and Engineering, 11, 249-262.  doi: 10.26599/JGSE.2023.9280021
    [4] Daniel Nnaemeka Obiora, Johnson Cletus Ibuot, 2023: Electrical geophysical evaluation of susceptibility to flooding in University of Nigeria, Nsukka main campus and its environs, Southeastern Nigeria, Journal of Groundwater Science and Engineering, 11, 422-434.  doi: 10.26599/JGSE.2023.9280033
    [5] Wondesen Fikade Niway, Dagnachew Daniel Molla, Tarun Kumar Lohani, 2022: Holistic approach of GIS based Multi-Criteria Decision Analysis (MCDA) and WetSpass models to evaluate groundwater potential in Gelana watershed of Ethiopia, Journal of Groundwater Science and Engineering, 10, 138-152.  doi: 10.19637/j.cnki.2305-7068.2022.02.004
    [6] Wondmagegn Taye Abebe, 2022: Evaluation of groundwater resource potential by using water balance model: A case of Upper Gilgel Gibe Watershed, Ethiopia, Journal of Groundwater Science and Engineering, 10, 209-222.  doi: 10.19637/j.cnki.2305-7068.2022.03.001
    [7] Muthamilselvan A Dr, Sekar Anamika, Ignatius Emmanuel, 2022: Identification of groundwater potential in hard rock aquifer systems using Remote Sensing, GIS and Magnetic Survey in Veppanthattai, Perambalur, Tamilnadu, Journal of Groundwater Science and Engineering, 10, 367-380.  doi: 10.19637/j.cnki.2305-7068.2022.04.005
    [8] Xin Ma, Dong-guang Wen, Guo-dong Yang, Xu-feng Li, Yu-jie Diao, Hai-hai Dong, Wei Cao, Shu-guo Yin, Yan-mei Zhang, 2021: Potential assessment of CO2 geological storage based on injection scenario simulation: A case study in eastern Junggar Basin, Journal of Groundwater Science and Engineering, 9, 279-291.  doi: 10.19637/j.cnki.2305-7068.2021.04.002
    [9] Kessar Cherif, Benkesmia Yamina, Blissag Bilal, Wahib Kébir Lahsen, 2021: Delineation of groundwater potential zones in Wadi Saida Watershed of NW-Algeria using remote sensing, geographic information system-based AHP techniques and geostatistical analysis, Journal of Groundwater Science and Engineering, 9, 45-64.  doi: 10.19637/j.cnki.2305-7068.2021.01.005
    [10] Muhammad Juandi, Islami Nur, 2021: Prediction criteria for groundwater potential zones in Kemuning District, Indonesia using the integration of geoelectrical and physical parameters, Journal of Groundwater Science and Engineering, 9, 12-19.  doi: 10.19637/j.cnki.2305-7068.2021.01.002
    [11] Hong-wei SONG, Fan XIA, Hai-dong MU, Wei-qiang WANG, Ming-sen SHANG, 2020: Study on detecting spatial distribution availability in mine goafs by ultra-high density electrical method, Journal of Groundwater Science and Engineering, 8, 281-286.  doi: 10.19637/j.cnki.2305-7068.2020.03.008
    [12] Dinagarapandi Pandi, Saravanan Kothandaraman, Mohan Kuppusamy, 2020: Delineation of potential groundwater zones based on multicriteria decision making technique, Journal of Groundwater Science and Engineering, 8, 180-194.  doi: 10.19637/j.cnki.2305-7068.2020.02.009
    [13] Fatima Zahra FAQIHI, Anasse BENSLIMANE, Abderrahim LAHRACH, Mohamed CHIBOUT, Mohamed EL MOKHTAR, 2020: Recognition of the hydrogeological potential using electrical sounding in the KhemissetTiflet region, Morocco, Journal of Groundwater Science and Engineering, 8, 172-179.  doi: 10.19637/j.cnki.2305-7068.2020.02.008
    [14] Mehmood Qaisar, Arshad Muhammad, Rizwan Muhammad, Hamid Shanawar, Mehmood Waqas, Ansir Muneer Muhammad, Irfan Muhammad, Anjum Lubna, 2020: Integration of geoelectric and hydrochemical approaches for delineation of groundwater potential zones in alluvial aquifer, Journal of Groundwater Science and Engineering, 8, 366-380.  doi: 10.19637/j.cnki.2305-7068.2020.04.007
    [15] SOSI Benjamin, BARONGO Justus, GETABU Albert, MAOBE Samson, 2019: Electrical-hydraulic conductivity model for a weathered-fractured aquifer system of Olbanita, Lower Baringo Basin, Kenya Rift, Journal of Groundwater Science and Engineering, 7, 360-372.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.007
    [16] SADIKI Moulay Lhassan, EL MANSOURI Bouabid, BENSEDDIK Badr, CHAO Jamal, KILI Malika, EL MEZOUARY Lhoussaine, 2019: Improvement of groundwater resources potential by artificial recharge technique: A case study of Charf El Akab aquifer in the Tangier region, Morocco, Journal of Groundwater Science and Engineering, 7, 224-236.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.003
    [17] Nouayti Abderrahime, Khattach Driss, Hilali Mohamed, Nouayti Nordine, 2019: Mapping potential areas for groundwater storage in the High Guir Basin (Morocco):Contribution of remote sensing and geographic information system, Journal of Groundwater Science and Engineering, 7, 309-322.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.002
    [18] LIU Yu, CHENG Yan-pei, GE Li-qiang, 2018: Analysis on exploitation status, potential and strategy of groundwater resources in the five countries of Central Asia, Journal of Groundwater Science and Engineering, 6, 49-57.  doi: 10.19637/j.cnki.2305-7068.2018.01.006
    [19] WU Ting-wen, WANG Li-huan, YANG Xiang-kui, 2017: Evaluation of groundwater potential and eco-geological environment quality in Sanjiang Plain of Heilongjiang Province, Journal of Groundwater Science and Engineering, 5, 193-201.
    [20] LIU Min, NIE Zhen-long, WANG Jin-zhe, WANG Li-fang, TIAN Yan-liang, 2016: An assessment of the carrying capacity of groundwater resources in North China Plain region–Analysis of potential for development, Journal of Groundwater Science and Engineering, 4, 174-187.
  • 加载中

Catalog

    Figures(7)  / Tables(7)

    Article Metrics

    Article views (697) PDF downloads(77) Cited by()
    Proportional views
    Related

    JGSE-ScholarOne Manuscript Launched on June 1, 2024.

    Online Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return