• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ EBSCO Scopus GeoRef AJ CNKI
Advanced Search
Volume 12 Issue 3
Sep.  2024
Turn off MathJax
Article Contents
Wang LJ, Wang Z, Jiang GL, et al. 2024. Variations in evaporation from water surfaces along the margins of the Badain Jaran Desert over nearly 60 years and influencing factors. Journal of Groundwater Science and Engineering, 12(3): 253-263 doi:  10.26599/JGSE.2024.9280019
Citation: Wang LJ, Wang Z, Jiang GL, et al. 2024. Variations in evaporation from water surfaces along the margins of the Badain Jaran Desert over nearly 60 years and influencing factors. Journal of Groundwater Science and Engineering, 12(3): 253-263 doi:  10.26599/JGSE.2024.9280019

Variations in evaporation from water surfaces along the margins of the Badain Jaran Desert over nearly 60 years and influencing factors

doi: 10.26599/JGSE.2024.9280019
More Information
  • Corresponding author: 972636980@qq.com
  • Received Date: 2023-10-02
  • Accepted Date: 2024-04-16
  • Available Online: 2024-08-10
  • Publish Date: 2024-09-15
  • Based on meteorological data collected over nearly 60 years (1960–2017) from four national meteorological stations along the margins of the Badain Jaran Desert, this study analyzed the spatiotemporal variations in evaporation from water surfaces and identified the dominant controlling factors. Methods used included linear trend analysis, linear tendency estimation, the departure method, the rank correlation coefficient-based method, and Multiple Linear Regression (MLR). Results indicate notable spatiotemporal differences in evaporation distribution and evolution. Spatially, average annual evaporation exhibited a pronounced altitude effect, decreasing at a rate of about 8.23 mm/m from east to west with increasing altitude. Temporally, annual evaporation showed significant upward trends after 1996 at the northeastern (Guaizi Lake) and western (Dingxin) margins, with rates of 132 mm/10a and 105 mm/10a, respectively. Conversely, along the northwestern (Ejina Banner) and southern (Alxa Right Banner) margins of the desert, an evaporation paradox was observed, with annual evaporation trending downward at rates of 162 mm/10a and 187 mm/10a, respectively, especially after 1987. The dominant factors controlling evaporation varied spatially: Average annual temperature and relative humidity influended the western margin (Dingxin), average annual temperature was the key factor for the northeastern margin (Guaizi Lake), and average wind speed was crucial for the northern (Ejina Banner) and southern (Alxa Right Banner) margins.
  • 加载中
  • Cao L, Shen M, Nie ZL, et al. 2021. Stable isotope characteristics of precipitation and moisture recycling in the Badain Jaran Desert. Earth Science, 46(8): 2973−2983. (in Chinese) DOI: 10.3799/dqkx.2020.273.
    Chen HB. 2019. Preliminary study on evaporation and replenishment of lakes in the hinterland of the Badain Jilin Desert. Gansu Water Resources and Hydropower Technology, 55(6): 1−9. (in Chinese)
    Chen JS, Li L, Wang JY, et al. 2004. Groundwater maintains dune landscape. Nature, 432: 459.
    Chen JS, Zhao X, Sheng XF, et al. 2006. Research on the formation mechanism of lake groups and sand mountains in the Badain Jaran Desert. Scientific Bulletin, 51(23): 2789−2796. (in Chinese)
    Chen X, Dai AA, Ju B. 2016. Analysis of potential evaporation characteristics and influence factors in Haba River Region. Yellow River, 38(11): 54−57. (in Chinese) DOI: 10.3969/j.issn.1000-1379.2016.11.013.
    Fan XL, Zhang XY, Tian MZ. 2021. Geochemical characteristics and paleoclimatic significance of the last glacial sediments in the southeastern margin of Badain Jaran Desert. Arid Land Geography, 44(2): 409−417. (in Chinese) DOI: 10.12118/j.issn.1000-6060.2021.02.12.
    Gates JB, Edmunds WM, Ma J, et al. 2008. Estimating groundwater recharge in a cold desertenvironment in northern China using chloride. Hydrogeology Journal, 16(5): 893−910. DOI: 10.1007/s10040-007-0264-z.
    He YH, Lin KR, Chen XH, et al. 2015. Classification-based spatiotemporal variations of Pan Evaporation Across the Guangdong Province, South China. Water Resources Management, 29(3): 901−912. DOI: 10.1007/s11269-014-0850-5.
    Hu WF, Wang NA, Zhao LQ, et al. 2015. Water-heat exchange over a typical lake in Badain Jaran Desert, China. Progress in Geography, 34(8): 1061−1071. (in Chinese) DOI: 10.18306/dlkxjz.2015.08.013.
    Jiang GL, Nie ZL, Liu Z, et al. 2021. OSL age and its hydrological implications of Alluvial-Diluvial deposits from the southern margin of Badain Jaran Desert. Earth Science, 46(5): 1829-1839. (in Chinese)
    Jiang GL, Nie ZL, Shen JM, et al. 2017. Research progress of quaternary environment of badain jaran desert. Marine Geology & Quaternary Geology, 37(1): 141−149. (in Chinese) DOI: 10.16562/j.cnki.0256-1492.2017.01.017.
    Jiang YD, Lv SJ, Liu HM, et al. 2023. Analysis of quantitative characteristics and spatial distribution for main shrubs on the eastern edge of the Badain Jaran Desert. Journal of Desert Research, 43(3): 295−304. (in Chinese)
    Ke K. 2104. Evaporation Estimation of Lake Area in Badain Jaran Desert. M. S. thesis. Beijing: China University of Geosciences. (in Chinese)
    Li GQ, Madsen DB, Jin M, et al. 2018. Orbital scale lake evolution in the Ejina Basin, central Gobi Desert, China revealed by K-feldspar luminescence dating of paleolake shoreline features. Quaternary International, 482: 109−121. DOI: 10.1016/j.quaint.2018.03.040.
    Li GQ, Tao SX, She LL, et al. 2019. Optically stimulated luminescence dating of paleoshorelines revealed late quaternary lake evolution in Alxa Plateau. Quaternary Research, 39(4): 803−811. (in Chinese) DOI: 10.11928/j.issn.1001-7410.2019.04.02.
    Li XQ, Ran C, Zhang XX, et al. 2022. Analysis of change and causes of evaporation for the Shiyang River Basin during the past 60 years. Arid Zone Research, 39(3): 745−753. (in Chinese) DOI: 10.13866/j.azr.2022.03.08.
    Liu HM, Lv SJ, Liu QQ, et al. 2021. Study on the particle sizes and spatial distribution of sandy soil under the Haloxylon ammodendron forest in the Badain Jaran Desert. Acta Agrestia Sinica, 29(6): 1249−1256. (in Chinese) DOI: 10.11733/j.issn.1007-0435.2021.06.015.
    Liu X, Jiao J, Wang T, et al. 2022. Population ecological features of Phragmites australis in sandy habitats on the southern edge of Badain Jaran Desert. Arid Zone Research, 39(1): 220−229. (in Chinese) DOI: 10.13866/j.azr.2022.01.21.
    Liu YJ, Chen J, Pan T. 2019. Analysis of changes in reference evapotranspiration, evaporation, and actual evapotranspiration and their influencing factors in the North China Plain During 1998-2005. Earth Space Science, 6(8): 1366−1377. DOI: 10.1029/2019EA000626.
    Liu ZY, Dong ZB, Wang JB, et al. 2016. Vegetation characteristics in the marginal areas of the Badain Jilin Desert. Desert of China, 36(5): 1348−1356. (in Chinese) DOI: 10.7522/j.issn.1000-694X.2014.00189.
    Ma N. 2012. Observational of energy partitioning and lake evaporation in the Badain Jaran Desert. Ph. D. thesis. Lanzhou: Lanzhou University. (in Chinese)
    Mao M, Meng ZJ, Dang XH, et al. 2022. Population dynamics of natural Haloxylon ammodendron in the eastern margin of Badain Jaran Desert. Arid Zone Research, 42(1): 971−978. (in Chinese) DOI: 10.13866/j.azr.2023.06.12.
    Qi TY, Zhang Q, Wang Y, et al. 2015. Spatiotemporal patterns of pan evaporation in 1960-2005 in China: Changing Properties and Possible Causes. Scientia Geographica Sinica, 35(12): 1599−1606. (in Chinese) DOI: 10.13249/j.cnki.sgs.2015.12.014.
    Qin J, Si JH, Jia B, et al. 2021. Study on the relationship between vegetation community characteristics and soil moisture in Badain Jaran Desert. Arid Zone Research, 38,(1): 207−222. (in Chinese) DOI: 10.13866/j.azr.2021.01.22.
    Roderick ML, Farquhar GD. 2002. The cause of decreased pan e vaporation over the past 50 years. Science, 298(15): 1410−1411. DOI: 10.1126/science.1075390.
    Roderick ML, Rotstayn LD, Farquhar GD, et al. 2007. On the attribution of changing pan evaporation. Geophysical Research Letters, 34(17): L17403. DOI:10.1029/2007GL 031166.
    Song SH, Nie ZL, Geng XX, et al. 2023. Response of runoff to climate change in the area of runoff yield in upstream Shiyang River Basin, Northwest China: A case study of the Xiying River. Journal of Groundwater Science and Engineering, 11(1): 89−96. DOI: 10.26599/JGSE.2023.9280009.
    Sarina, Dong ZB, Nan WG. 2021. The aesthetic value of mega-dune lines in the Badain Jaran Desert. Journal of Desert Research, 41(2): 221−230. (in Chinese) DOI: 10.7522/j.issn.1000-694X.2021.00020.
    Wang NA, Ning K, Li Z L, et al. 2016. Holocene high lake-levels and pan-lake period on Badain Jaran Desert. Science China Earth Sciences, 59: 1633−1641. (in Chinese) DOI: 10.1007/s11430-016-5307-7.
    Wang XS, Hu XN, Jin XM, et al. 2014. The interaction between groundwater and lakes in the Badain Jaran Desert. Science Frontiers, 21(4): 91−99. (in Chinese) DOI: 10.13745/j.esf.2014.04.010.
    Wang Z, Wang LJ, Shen JM, et al. 2024. Groundwater recharge via precipitation in the Badain Jaran Desert, China. Journal of Groundwater Science and Engineering, 12(1): 109−118. DOI: 10.26599/JGSE.2024.9280009.
    Wu BQ, Wu JF, Liu J, et al. 2015. Study on preference of tourists in the Badain Jaran Desert based on network text. Journal of Desert Research, 35(4): 1041−1047. (in Chinese) DOI: 10.7522/j.issn.1000-694X.2015.00036.
    Yang X, Ma N, Dong J, et al. 2010. Recharge to the Inter-Dune Lakes and holocene climatic changes in the Badain Jaran Desert, Western China. Quaternary Research, 73(1): 10-19.
    Zhang XY, Fang XL. 2023. Mineralogical characteristics and its significance of late Pleistocene sediments in the Badain Jaran Desert. Arid Land Geography, 45(6): 1773−1783. (in Chinese)
    Zhang WJ, Wang NH, Yu XR, et al. 2020. Magnitude of groundwater evapotranspiration in the Badain Jaran Desert based on groundwater dynamics method and empirical model: A case study of the Sumujilin Lake Area. Arid Zone Research, 37(5): 1215−1222. (in Chinese) DOI: 10.13866/j.azr.2020.05.14.
  • 2305-7068/© Journal of Groundwater Science and Engineering Editorial Office. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)

  • Relative Articles

    [1] Liu Yang, Yan-pei Cheng, Xue-ru Wen, Jun Liu, 2024: Development, hotspots and trend directions of groundwater numerical simulation: A bibliometric and visualization analysis, Journal of Groundwater Science and Engineering, 12, 411-427.  doi: 10.26599/JGSE.2024.9280031
    [2] Vinay Kumar Gautam, Mahesh Kothari, P.K. Singh, S.R. Bhakar, K.K. Yadav, 2022: Analysis of groundwater level trend in Jakham River Basin of Southern Rajasthan, Journal of Groundwater Science and Engineering, 10, 1-9.  doi: 10.19637/j.cnki.2305-7068.2022.01.001
    [3] Ya-ci Liu, Zhao-ji Zhang, Xin-yi Zhao, Meng-tuo Wen, Sheng-wei Cao, Ya-song Li, 2021: Arsenic contamination caused by roxarsone transformation with spatiotemporal variation of microbial community structure in a column experiment, Journal of Groundwater Science and Engineering, 9, 304-316.  doi: 10.19637/j.cnki.2305-7068.2021.04.004
    [4] Liang Zhu, Jing-tao Liu, Ming-nan Yang, Yu-xi Zhang, De-ping Wen, 2021: Evolutionary trend of water cycle in Beichuan River Basin of China under the influence of vegetation restoration, Journal of Groundwater Science and Engineering, 9, 202-211.  doi: 10.19637/j.cnki.2305-7068.2021.03.003
    [5] Mehdi Bahrami, Elmira Khaksar, Elahe Khaksar, 2020: Spatial variation assessment of groundwater quality using multivariate statistical analysis(Case Study: Fasa Plain, Iran), Journal of Groundwater Science and Engineering, 8, 230-243.  doi: 10.19637/j.cnki.2305-7068.2020.03.004
    [6] Yacob T Tesfaldet, Avirut Puttiwongrak, Tanwa Arpornthip, 2020: Spatial and temporal variation of groundwater recharge in shallow aquifer in the Thepkasattri of Phuket, Thailand, Journal of Groundwater Science and Engineering, 8, 10-19.  doi: 10.19637/j.cnki.2305-7068.2020.01.002
    [7] ZHOU Nian-qing, LI Tian-shui, ZHAO Shan, ZHAO Shan, XIA Xue-min, 2019: Characteristics of the main inorganic nitrogen accumulation in surface water and groundwater of wetland succession zones, Journal of Groundwater Science and Engineering, 7, 173-181.  doi: 10.19637/j.cnki.2305-7068.2019.02.008
    [8] HU Zun-fang, KANG Feng-xin, ZOU An-de, YU Lin-song, LI Yang, TIAN Tong-liang, KANG Gui-ling, 2019: Evolution trend of the water quality in Dongping Lake after South-North Water Transfer Project in China, Journal of Groundwater Science and Engineering, 7, 333-339.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.004
    [9] CHEN Peng, CHEN Kang, GAO Ye-xin, 2018: Analysis of phreatic evaporation law and influence factors of typical lithology in Hebei Plain, Journal of Groundwater Science and Engineering, 6, 270-279.  doi: 10.19637/j.cnki.2305-7068.2018.04.003
    [10] ZHU Wei, TANG Wen, LIU Qiang, ZHANG Mei-gui, 2017: Analysis on variation characteristics of geothermal response in Liaoning Province, Journal of Groundwater Science and Engineering, 5, 336-342.
    [11] GAN Hao-nan, LIN Wen-jing, YUE Gao-fan, WANG Xiao, MA Feng, WANG Gui-ling, 2017: Research on the fault controlling mechanism of geothermal water in Zhangzhou Basin, Journal of Groundwater Science and Engineering, 5, 326-335.
    [12] SHANG Man-ting, LIU Pei-gui, LEI Chao, LIU Ming-chao, WU Liang, 2017: Effect of climate change on the trends of evaporation of phreatic water from bare soil in Huaibei Plain, China, Journal of Groundwater Science and Engineering, 5, 213-221.
    [13] LIU Jun-qiu, XIE Xin-min, 2016: Numerical simulation of groundwater and early warnings from the simulated dynamic evolution trend in the plain area of Shenyang, Liaoning Province (P.R. China), Journal of Groundwater Science and Engineering, 4, 367-376.
    [14] HAO Qi-chen, SHAO Jing-li, CUI Ya-li, ZHANG Qiu-lan, 2016: Development of a new method for efficiently calculating of evaporation from the phreatic aquifer in variably saturated flow modeling, Journal of Groundwater Science and Engineering, 4, 26-34.
    [15] GONG Xiao-ping, JIANG Guang-hui, CHEN Chang-jie, GUO Xiao-jiao, ZHANG Hua-sheng, 2015: Specific yield of phreatic variation zone in karst aquifer with the method of water level analysis, Journal of Groundwater Science and Engineering, 3, 192-201.
    [16] JIA Rui-liang, ZHOU Jin-long, LI Qiao, LI Yang, 2015: Analysis of evaporation of high-salinity phreatic water at a burial depth of 0 m in an arid area, Journal of Groundwater Science and Engineering, 3, 1-8.
    [17] GE Li-qiang, CHENG Yan-pei, YUE Chen, 2014: Study of water resources for crop utilization in China from the perspective of Virtual Water, Journal of Groundwater Science and Engineering, 2, 67-75.
    [18] Jiansheng Shi, Hongtao Liu, Zhiyuan Liu, Tieliu Chen, 2013: Application of the “Accurate Control Groundwater Resources” Theory in Containment of Groundwater Resource Exhaustion Trend, Journal of Groundwater Science and Engineering, 1, 1-10.
    [19] Yan Zhang, Shuai Song, Jing Li, Fadong Li, Guangshuai Zhao, Qiang Liu, 2013: Stable Isotope Composition of Rainfall, Surface Water and Groundwater along the Yellow River, Journal of Groundwater Science and Engineering, 1, 82-88.
    [20] Feng-long Zhang, Fu-li Qi, Shou-cheng Lu, Yong-li Li, 2013: Analysis of the Water Factor with the Major Environmental Issues in the Sanjiang Plain, Journal of Groundwater Science and Engineering, 1, 28-32.
  • 加载中

Catalog

    Figures(9)  / Tables(5)

    Article Metrics

    Article views (262) PDF downloads(112) Cited by()
    Proportional views
    Related

    JGSE-ScholarOne Manuscript Launched on June 1, 2024.

    Online Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return