Citation: | Eftekhari M, Khashei-Siuki A. 2025. Evaluating machine learning methods for predicting groundwater fluctuations using GRACE satellite in arid and semi-arid regions. Journal of Groundwater Science and Engineering, 13(1): 5-21 doi: 10.26599/JGSE.2025.9280035 |
Afraz A, Eftekhari M, Akbari M, et al. 2021. Application assessment of GRACE and CHIRPS data in the Google Earth Engine to investigate their relation with groundwater resource changes (Northwestern region of Iran). Journal of Groundwater Science and Engineering, 9(2): 102−113. DOI: 10.19637/j.cnki.2305-7068.2021.02.002.
|
Ali S, Liu D, Fu Q, et al. 2021. Improving the resolution of GRACE data for spatio-temporal groundwater storage assessment. Remote Sensing, 13(17): 3513. DOI: 10.3390/rs13173513.
|
Barros RC, Basgalupp MP, de Carvalho ACPLF, et al. 2012. A survey of evolutionary algorithms for decision-tree induction. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(3): 291−312. DOI: 10.1109/TSMCC.2011.2157494.
|
Bhavsar H, Panchal MH. 2012. A review on support vector machine for data classification. International Journal of Advanced Research in Computer Engineering and Technology (IJARCET), 1(10): 185−189.
|
Charbuty B, Abdulazeez A. 2021. Classification based on decision tree algorithm for machine learning. Journal of Applied Science and Technology Trends, 2(1): 20−28. DOI: 10.38094/jastt20165.
|
Chen JL. 2019. Satellite gravimetry and mass transport in the earth system. Geodesy and Geodynamics, 10(5): 402−415. DOI: 10.1016/j.geog.2018.07.001.
|
Chen JL, Cazenave A, Dahle C, et al. 2022. Applications and challenges of GRACE and GRACE follow-on satellite gravimetry. Surveys in Geophysics, 43(1): 305−345. DOI: 10.1007/s10712-021-09685-x.
|
Chen JL, Famigliett JS, Scanlon BR, et al. 2016. Groundwater storage changes: Present status from GRACE observations. Surveys in Geophysics, 37(2): 397−417. DOI: 10.1007/s10712-015-9332-4.
|
Coelho VHR, Bertrand GF, Montenegro SMGL, et al. 2018. Piezometric level and electrical conductivity spatiotemporal monitoring as an instrument to design further managed aquifer recharge strategies in a complex estuarial system under anthropogenic pressure. Journal of Environmental Management, 209: 426−439. DOI: 10.1016/j.jenvman.2017.12.078.
|
Dong HW, Yang LM, Wang X. 2021. Robust semi-supervised support vector machines with Laplace kernel-induced correntropy loss functions. Applied Intelligence, 51(2): 819−833. DOI: 10.1007/s10489-020-01865-3.
|
Eftekhari M, Madadi K, Akbari M. 2019. Monitoring the fluctuations of the Birjand Plain aquifer using the GRACE satellite images and the GIS spatial analyses. Watershed Management Research Journal, 32(4): 51−65. (In Persian). DOI: 10.22092/wmej.2019.126204.1218.
|
Fawagreh K, Gaber MM, Elyan E. 2014. Random forests: From early developments to recent advancements. Systems Science and Control Engineering, 2(1): 602−609. DOI: 10.1080/21642583.2014.956265.
|
Feng W, Shum C, Zhong M, et al. 2018. Groundwater storage changes in China from satellite gravity: An overview. Remote Sensing, 10(5): 674. DOI: 10.3390/rs10050674.
|
Font-Capo J, Pujades E, Vàzquez-Suñé E, et al. 2015. Assessment of the barrier effect caused by underground constructions on porous aquifers with low hydraulic gradient: A case study of the metro construction in Barcelona, Spain. Engineering Geology, 196: 238−250. DOI: 10.1016/j.enggeo.2015.07.006.
|
Frappart F, Ramillien G. 2018. Monitoring groundwater storage changes using the Gravity Recovery and Climate Experiment (GRACE) satellite mission: A review. Remote Sensing, 10(6): 829. DOI: 10.3390/rs10060829.
|
Genuer R, Poggi JM. 2020. Random forests. Cham: Springer International Publishing: 33−55. DOI: 10.1007/978-3-030-56485-8_3.
|
Gilbert J, Boateng C, Aryee J, et al. 2023. A systematic review of machine learning algorithms in groundwater level simulations and forecasting. Preprint.
|
Gleeson T, Cuthbert M, Ferguson G, et al. 2020. Global groundwater sustainability, resources, and systems in the anthropocene. Annual Review of Earth and Planetary Sciences, 48: 431−463. DOI: 10.1146/annurev-earth-071719-055251.
|
Gong CC, Cook PG, Therrien R, et al. 2023. On groundwater recharge in variably saturated subsurface flow models. Water Resources Research, 59(9): e2023wr034920. DOI: 10.1029/2023wr034920.
|
Gong CC, Zhang ZY, Wang WK, et al. 2021. An assessment of different methods to determine specific yield for estimating groundwater recharge using lysimeters. Science of the Total Environment, 788: 147799. DOI: 10.1016/j.scitotenv.2021.147799.
|
Haileslassie T, Gebremedhin K. 2015. Hazards of heavy metal contamination in ground water. International Journal of Technology Enhancements and Emerging Engineering Research, 3(2), 1−6.
|
Hilario M, Kalousis A, Pellegrini C, et al. 2006. Processing and classification of protein mass spectra. Mass Spectrometry Reviews, 25(3): 409−449. DOI: 10.1002/mas.20072.
|
Honarbakhsh A, Azma A, Nikseresht F, et al. 2019. Hydro-chemical assessment and GIS-mapping of groundwater quality parameters in semi-arid regions. Journal of Water Supply: Research and Technology-Aqua, 68(7): 509−522. DOI: 10.2166/aqua.2019.009.
|
Humphrey V, Rodell M, Eicker A. 2023. Using satellite-based terrestrial water storage data: A review. Surveys in Geophysics, 44(5): 1489−1517. DOI: 10.1007/s10712-022-09754-9.
|
Joachims T. 2012. Learning to classify text using support vector machines (Vol. 668). Springer Science and Business Media. DOI: 10.1007/978-1-4615-0907-3.
|
Kalbus E, Reinstorf F, Schirmer M. 2006. Measuring methods for groundwater–surface water interactions: Areview. Hydrology and Earth System Sciences, 10(6): 873−887. DOI: 10.5194/hess-10-873-2006.
|
Khanlari G, Heidari M, Momeni AA, et al. 2012. The effect of groundwater overexploitation on land subsidence and sinkhole occurrences, western Iran. Quarterly Journal of Engineering Geology and Hydrogeology, 45(4): 447−456. DOI: 10.1144/qjegh2010-069.
|
King Z, Farrington J, Utley M, et al. 2022. Machine learning for real-time aggregated prediction of hospital admission for emergency patients. NPJ Digital Medicine, 5(1): 104. DOI: 10.1038/s41746-022-00649-y.
|
Kumar D, Bhattacharjya RK. 2021. GRNN Model for prediction of groundwater fluctuation in the state of Uttarakhand of India using GRACE data under limited bore well data. Journal of Hydroinformatics, 23(3): 567−588. DOI: 10.2166/hydro.2021.108.
|
Li FP, Wang ZT, Chao NF, et al. 2018. Assessing the influence of the Three Gorges Dam on hydrological drought using GRACE data. Water, 10(5): 669. DOI: 10.3390/w10050669.
|
Li PY, Wu JH, Zhou WF, et al. 2023. Groundwater contamination and induced risk and hazard in a Karst aquifer. Environmental Earth Sciences. Cham: Springer International Publishing: 179−256. DOI: 10.1007/978-3-031-48427-8_7.
|
Liu Q, Gui DW, Zhang L, et al. 2022. Simulation of regional groundwater levels in arid regions using interpretable machine learning models. Science of the Total Environment, 831: 154902. DOI: 10.1016/j.scitotenv.2022.154902.
|
Liu W, Yu HJ, Yang LS, et al. 2021. Deep learning-based predictive framework for groundwater level forecast in arid irrigated areas. Water, 13(18): 2558. DOI: 10.3390/w13182558.
|
Longuevergne L, Scanlon BR, Wilson CR. 2010. GRACE hydrological estimates for small basins: Evaluating processing approaches on the high Plains aquifer, USA. Water Resources Research, 46(11): e2009wr008564. DOI: 10.1029/2009wr008564.
|
Louppe G. 2014. Understanding random forests: From theory to practice. Ph D. thesis. University of Liège: 1407.
|
Maimon OZ, Rokach L. 2014. Data mining with decision trees: Theory and applications: 81. World scientific.
|
Matin SS, Farahzadi L, Makaremi S, et al. 2018. Variable selection and prediction of uniaxial compressive strength and modulus of elasticity by random forest. Applied Soft Computing, 70: 980−987. DOI: 10.1016/j.asoc.2017.06.030.
|
Meyer U, Sosnica K, Arnold D, et al. 2019. SLR, GRACE and swarm gravity field determination and combination. Remote Sensing, 11(8): 956. DOI: 10.3390/rs11080956.
|
Moore S, Fisher JB. 2012. Challenges and opportunities in GRACE-based groundwater storage assessment and management: An example from Yemen. Water Resources Management, 26(6): 1425−1453. DOI: 10.1007/s11269-011-9966-z.
|
Patel HH, Prajapati P. 2018. Study and analysis of decision tree based classification algorithms. International Journal of Computer Sciences and Engineering, 6(10): 74−78. DOI: 10.26438/ijcse/v6i10.7478.
|
Rai K, Devi MS, Guleria A. 2016. Decision tree based algorithm for intrusion detection. International Journal of Advanced Networking and Applications, 7(4), 2828.
|
Rajaee G, Hajizadeh F, Salman MA, et al. 2011. An analysis of physical-chemical properties and quality of underground agricultural and drinking water in Southern Khorasan Province. Environmental Researches, 3(5), 13−24. (In Persian) https://dorl.net/dor/20.1001.1.20089597.1391.3.5.3.4
|
Ram AP. 2022. Unsupervised representation learning of GRACE improves groundwater predictions. Water, 14(19): 2947. DOI: 10.3390/w14192947.
|
Rivera-Lopez R, Canul-Reich J, Mezura-Montes E, et al. 2022. Induction of decision trees as classification models through metaheuristics. Swarm and Evolutionary Computation, 69: 101006. DOI: 10.1016/j.swevo.2021.101006.
|
Roy DK, Munmun TH, Paul CR, et al. 2023. Improving forecasting accuracy of multi-scale groundwater level fluctuations using a heterogeneous ensemble of machine learning algorithms. Water, 15(20): 3624. DOI: 10.3390/w15203624.
|
Sahour H, Sultan M, Abdellatif B, et al. 2022. Identification of shallow groundwater in arid lands using multi-sensor remote sensing data and machine learning algorithms. Journal of Hydrology, 614: 128509. DOI: 10.1016/j.jhydrol.2022.128509.
|
Sansone M, Fusco R, Pepino A, et al. 2013. Electrocardiogram pattern recognition and analysis based on artificial neural networks and support vector machines: A review. Journal of Healthcare Engineering, 4(4): 465−504. DOI: 10.1260/2040-2295.4.4.465.
|
Saputra DCE, Ma'arif A, Sunat K. 2024. Optimizing predictive performance: Hyperparameter tuning in stacked multi-kernel support vector machine random forest models for diabetes identification. Journal of Robotics and Control (JRC), 4(6): 896−904. DOI: 10.18196/jrc.v4i6.20898.
|
Schelter LN. 2021. On groundwater monitoring using machine learning and satellite remote sensing (Doctoral dissertation). Ph.D thesis. Rheinisch-Westfälische Technische Hochschule Aachen.
|
Seidu J, Ewusi A, Kuma JSY, et al. 2023. Impact of data partitioning in groundwater level prediction using artificial neural network for multiple wells. International Journal of River Basin Management, 21(4): 639−650. DOI: 10.1080/15715124.2022.2079653.
|
Seni G, Elder JF. 2010. Ensemble Methods in Data Mining: Improving accuracy through combining predictions. ChamSpringer International Publishing, DOI: 10.1007/978-3-031-01899-2.
|
Seo JY, Lee SI. 2021. Predicting changes in spatiotemporal groundwater storage through the integration of multi-satellite data and deep learning models. IEEE Access, 9: 157571−157583. DOI: 10.1109/ACCESS.2021.3130306.
|
Shao Y, Lunetta RS. 2012. Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS Journal of Photogrammetry and Remote Sensing, 70: 78−87. DOI: 10.1016/j.isprsjprs.2012.04.001.
|
Shouval R, Bondi O, Mishan H, et al. 2014. Application of machine learning algorithms for clinical predictive modeling: A data-mining approach in SCT. Bone Marrow Transplantation, 49(3): 332−337. DOI: 10.1038/bmt.2013.146.
|
Singha S, Pasupuleti S, Singha SS, et al. 2021. Prediction of groundwater quality using efficient machine learning technique. Chemosphere, 276: 130265. DOI: 10.1016/j.chemosphere.2021.130265.
|
Springer A, Eicker A, Bettge A, et al. 2017. Evaluation of the water cycle in the European COSMO-REA6 reanalysis using GRACE. Water, 9(4): 289. DOI: 10.3390/w9040289.
|
Sun AY. 2013. Predicting groundwater level changes using GRACE data. Water Resources Research, 49(9): 5900−5912. DOI: 10.1002/wrcr.20421.
|
Swenson S, Wahr J. 2002. Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity. Journal of Geophysical Research: Solid Earth, 107(B9). DOI: 10.1029/2001jb000576.
|
Wang J, Lu SY, Wang SH, et al. 2022. A review on extreme learning machine. Multimedia Tools and Applications, 81(29): 41611−41660. DOI: 10.1007/s11042-021-11007-7.
|
Wang YH, Gupta HV. 2024. A mass-conserving-perceptron for machine-learning-based modeling of geoscientific systems. Water Resources Research, 60(4): e2023wr036461. DOI: 10.1029/2023wr036461.
|
Werth S, Güntner A, Schmidt R, et al. 2009. Evaluation of GRACE filter tools from a hydrological perspective. Geophysical Journal International, 179(3): 1499−1515. DOI: 10.1111/j.1365-246X.2009.04355.x.
|
Wilhite DA, Glantz MH. 1985. Understanding: The drought phenomenon: The role of definitions. Water International, 10(3): 111−120. DOI: 10.1080/02508068508686328.
|
Wouters B, Bonin JA, Chambers DP, et al. 2014. GRACE, time-varying gravity, Earth system dynamics and climate change. Reports on Progress in Physics. Physical Society (Great Britain), 77(11): 116801. DOI: 10.1088/0034-4885/77/11/116801.
|
Yaman A, Cengiz MA. 2021. The effects of kernel functions and optimal hyperparameter selection on support vector machines. Journal of New Theory, (34): 64−71.
|
Yang YT, Long D, Guan HD, et al. 2014. GRACE satellite observed hydrological controls on interannual and seasonal variability in surface greenness over mainland Australia. Journal of Geophysical Research: Biogeosciences, 119(12): 2245−2260. DOI: 10.1002/2014jg002670.
|
Yao H, Qin RJ, Chen XY. 2019. Unmanned aerial vehicle for remote sensing applications—a review. Remote Sensing, 11(12): 1443. DOI: 10.3390/rs11121443.
|
Zhang XM, Wang N, Cao LS, et al. 2024. Analysis of the contribution of rainfall to recharge in the Mu Us Desert (China) based on lysimeter data. Hydrogeology Journal, 32(1): 279−288. DOI: 10.1007/s10040-023-02750-2.
|
Zhu FB. 2018. A classification algorithm of CART decision tree based on MapReduce attribute weights. International Journal of Performability Engineering, 14(1): 17. DOI: 10.23940/ijpe.18.01.p3.1725.
|
Ziegler A, König IR. 2014. Mining data with random forests: Current options for real-world applications. WIREs Data Mining and Knowledge Discovery, 4(1): 55−63. DOI: 10.1002/widm.1114.
|
2305-7068/© Journal of Groundwater Science and Engineering Editorial Office. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)
[1] | Ming-yang Li, Chao-zhu Li, Feng Dong, Peng Jiang, Yong-qiang Li, 2024: Groundwater level thresholds for maintaining groundwater-dependent ecosystems in northwest China: Current developments and future challenges, Journal of Groundwater Science and Engineering, 12, 453-462. doi: 10.26599/JGSE.2024.9280032 |
[2] | Temesgen Mekuriaw Manderso, Yitbarek Andualem Mekonnen, Tadege Aragaw Worku, 2023: Application of GIS based analytical hierarchy process and multicriteria decision analysis methods to identify groundwater potential zones in Jedeb Watershed, Ethiopia, Journal of Groundwater Science and Engineering, 11, 221-236. doi: 10.26599/JGSE.2023.9280019 |
[3] | She-ming Chen, Hong-wei Liu, Fu-tian Liu, Jin-jie Miao, Xu Guo, Zhou Zhang, Wan-jun Jiang, 2022: Using time series analysis to assess tidal effect on coastal groundwater level in Southern Laizhou Bay, China, Journal of Groundwater Science and Engineering, 10, 292-301. doi: 10.19637/j.cnki.2305-7068.2022.03.007 |
[4] | Hui-feng Yang, Rui-fang Meng, Xi-lin Bao, Wen-geng Cao, Ze-yan Li, Bu-yun Xu, 2022: Assessment of water level threshold for groundwater restoration and over-exploitation remediation the Beijing-Tianjin-Hebei Plain, Journal of Groundwater Science and Engineering, 10, 113-127. doi: 10.19637/j.cnki.2305-7068.2022.02.002 |
[5] | Vinay Kumar Gautam, Mahesh Kothari, P.K. Singh, S.R. Bhakar, K.K. Yadav, 2022: Analysis of groundwater level trend in Jakham River Basin of Southern Rajasthan, Journal of Groundwater Science and Engineering, 10, 1-9. doi: 10.19637/j.cnki.2305-7068.2022.01.001 |
[6] | Wondesen Fikade Niway, Dagnachew Daniel Molla, Tarun Kumar Lohani, 2022: Holistic approach of GIS based Multi-Criteria Decision Analysis (MCDA) and WetSpass models to evaluate groundwater potential in Gelana watershed of Ethiopia, Journal of Groundwater Science and Engineering, 10, 138-152. doi: 10.19637/j.cnki.2305-7068.2022.02.004 |
[7] | Shima Nasiri, Hossein Ansari, Ali Naghi Ziaei, 2022: Determination of water balance equation components in irrigated agricultural watersheds using SWAT and MODFLOW models : A case study of Samalqan plain in Iran, Journal of Groundwater Science and Engineering, 10, 44-56. doi: 10.19637/j.cnki.2305-7068.2022.01.005 |
[8] | O Boulariah, PA Mikhailov, A Longobardi, AN Elizariev, SG Aksenov, 2021: Assessment of prediction performances of stochastic models: Monthly groundwater level prediction in Southern Italy, Journal of Groundwater Science and Engineering, 9, 161-170. doi: 10.19637/j.cnki.2305-7068.2021.02.008 |
[9] | Marios C Kirlas, 2021: Assessment of porous aquifer hydrogeological parameters using automated groundwater level measurements in Greece, Journal of Groundwater Science and Engineering, 9, 269-278. doi: 10.19637/j.cnki.2305-7068.2021.04.001 |
[10] | Afraz Mehdi, Eftekhari Mobin, Akbari Mohammad, Ali Haji Elyasi, Noghani Zahra, 2021: Application assessment of GRACE and CHIRPS data in the Google Earth Engine to investigate their relation with groundwater resource changes (Northwestern region of Iran), Journal of Groundwater Science and Engineering, 9, 102-113. doi: 10.19637/j.cnki.2305-7068.2021.02.002 |
[11] | Van Viet Luong, 2021: Effects of urbanization on groundwater level in aquifers of Binh Duong Province, Vietnam, Journal of Groundwater Science and Engineering, 9, 20-36. doi: 10.19637/j.cnki.2305-7068.2021.01.003 |
[12] | Abdulrahman Th Mohammad, Qassem H Jalut, Nadia L Abbas, 2020: Predicting groundwater level of wells in the Diyala River Basin in eastern Iraq using artificial neural network, Journal of Groundwater Science and Engineering, 8, 87-96. doi: 10.19637/j.cnki.2305-7068.2020.01.009 |
[13] | Dinagarapandi Pandi, Saravanan Kothandaraman, Mohan Kuppusamy, 2020: Delineation of potential groundwater zones based on multicriteria decision making technique, Journal of Groundwater Science and Engineering, 8, 180-194. doi: 10.19637/j.cnki.2305-7068.2020.02.009 |
[14] | Abdullah Al Jami, Meher Uddin Himel, Khairul Hasan, Shilpy Rani Basak, Ayesha Ferdous Mita, 2020: NARX neural network approach for the monthly prediction of groundwater levels in Sylhet Sadar, Bangladesh, Journal of Groundwater Science and Engineering, 8, 118-126. doi: 10.19637/j.cnki.2305-7068.2020.02.003 |
[15] | A Muthamilselvan, N Rajasekaran, R Suresh, 2019: Mapping of hard rock aquifer system and artificial recharge zonation through remote sensing and GIS approach in parts of Perambalur District of Tamil Nadu, India, Journal of Groundwater Science and Engineering, 7, 264-281. doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.007 |
[16] | XU Jun-xiang, WANG Shao-juan, LI Chang-suo, XING Li-ting, 2019: Numerical analysis and evaluation of groundwater recession in a flood detention basin, Journal of Groundwater Science and Engineering, 7, 253-263. doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.006 |
[17] | ZHOU Zhi-chao, WANG Ju, SU Rui, GUO Yong-hai, LI Jie-biao, JI Rui-li, ZHANG Ming, DONG Jian-nan, 2016: Study on the residence time of deep groundwater for high-level radioactive waste geological disposal, Journal of Groundwater Science and Engineering, 4, 52-59. |
[18] | MA Luan, WANG Guang-cai, SHI Zhe-ming, GUO Yu-ying, XU Qing-yu, HUANG Xu-juan, 2016: Simulation of groundwater level recovery in abandoned mines, Fengfeng coalfield, China, Journal of Groundwater Science and Engineering, 4, 344-353. |
[19] | Ramasamy Jayakumar, 2015: Groundwater level monitoring-importance global groundwater monitoring network, Journal of Groundwater Science and Engineering, 3, 295-305. |
[20] | Jiankang Zhang, Yanpei Cheng, Hua Dong, Qingshi Guo, Kun Liu, Fawang Zhang, 2013: Study on Ecological Environment and Sustainable Land Use Based on Satellite Remote Sensing, Journal of Groundwater Science and Engineering, 1, 89-96. |
JGSE-ScholarOne Manuscript Launched on June 1, 2024.