-
Abstract: Groundwater accounts for about half of the water use for irrigation in India. The fluctuation pattern of the groundwater level is examined by observing rainfall replenishment and monitoring wells. The southern part of Rajasthan has experienced abrupt changes in rainfall and has been highly dependent on groundwater over decades. This study presents the impact of over-dependence on groundwater usage for irrigation and other purposes, spatially and temporally. Hence, the objective of this study is to examine the groundwater level trend by using statistical analysis and geospatial technique. Rainfall factor was also studied in groundwater level fluctuation during 2009-2019. To analyze the influence of each well during recharge or withdrawal of groundwater, thiessien polygonswere generated from them. In the Jakham River basin, 75 wells have been identified for water level trend study using the Mann-Kendall statistical test. The statistics of trend analysis show that 15% wells are experiencing water level decline in pre-monsoon, while very low percentage of wells have such trend during post-monsoon season. The average rate of water level decline is 0.245 m/a in pre-monsoon and 0.05 m/a in post-monsoon. The aquifer recharge potential is also decreasing by year.it is expected that such type of studies will help the policy makers to adopt advanced management practices to ensure sustainable groundwater resource management.
-
Key words:
- Groundwater /
- Trend analysis /
- Rainfall /
- Kendal tau /
- Slope /
- p value /
- Recharge /
- Pre- and post-monsoon
-
Table 1. Results of Mann-Kendal test statistics for pre- and post monsoon season (2009-2020)
Well No. Latitude Longitude Pre-monsoon Post-monsoon Kendal tau p-value Slope Trend Kendal tau p-value Slope Trend 1 74.716 24.057 0.564 0.020 0.314 Increasing 0.019 0.150 0.080 No 2 74.791 24.212 −0.073 0.815 −0.037 No 0.787 0.001 0.603 Increasing 3 74.645 24.210 0.477 0.050 0.394 Increasing −0.087 0.050 −0.320 Decreasing 4 74.557 24.383 −0.241 0.347 −0.350 No 0.537 0.028 0.657 Increasing 5 74.721 24.391 0.225 0.333 0.493 No −0.507 0.028 −0.457 Decreasing 6 74.622 24.444 −0.261 0.350 −0.227 No 0.294 0.241 0.530 No 7 74.642 24.398 −0.500 0.400 −0.483 No 0.290 0.180 0.350 No 8 74.738 24.302 −0.450 0.035 −0.253 Decreasing 0.241 0.347 0.100 No 9 74.652 24.325 0.611 0.012 0.625 Increasing 0.153 0.034 0.105 Increasing 10 74.541 24.293 0.400 0.022 0.455 Increasing 0.000 1.000 0.000 No 11 74.596 24.239 −0.077 0.251 −0.194 No 0.750 0.093 0.180 No 12 74.713 24.240 −0.093 0.073 −0.754 No 0.436 0.060 0.331 No 13 74.733 24.131 −0.047 0.213 −0.014 No −0.020 0.036 −0.354 Decreasing 14 74.644 24.141 0.019 1.000 0.000 No 0.110 0.696 0.062 No 15 74.603 24.089 0.600 0.013 0.763 Increasing 0.019 1.000 0.000 No 16 74.635 24.052 0.477 0.051 0.394 Increasing 0.220 0.390 0.250 No 17 74.687 24.027 −0.485 0.200 −0.353 No −0.093 0.754 −0.036 No 18 74.651 24.002 −0.019 1.000 0.000 No 0.661 0.006 0.913 Increasing 19 74.617 24.056 0.167 0.531 0.390 No 0.198 0.390 0.210 No 20 74.765 24.061 −0.404 0.101 −0.384 No −0.019 1.000 0.000 No 21 74.711 24.039 −0.073 0.815 −0.037 No 0.304 0.235 0.489 No 22 74.691 24.065 −0.294 0.241 −0.285 No 0.367 0.138 0.300 No 23 74.699 24.072 −0.073 0.815 −0.037 No −0.092 0.734 −0.139 No 24 74.760 24.079 −0.352 0.159 −2.262 No −0.200 0.436 −0.400 No 25 74.744 24.093 −0.073 0.315 −0.045 No −0.074 0.035 −0.283 Decreasing 26 74.750 24.103 −0.204 0.433 −0.793 No −0.611 0.012 −0.621 Decreasing 27 74.696 24.095 −0.073 0.815 −0.037 No −0.035 0.018 −0.210 Decreasing 28 74.758 24.157 −0.278 0.273 −0.464 No 0.374 0.135 0.383 No 29 74.726 24.154 −0.035 0.815 −0.037 No 0.035 0.018 0.210 Increasing 30 74.667 24.101 −0.278 0.273 −0.870 No 0.661 0.006 0.599 Increasing 31 74.613 24.089 −0.073 0.435 −0.327 No 0.350 0.319 0.452 No 32 74.668 24.154 0.167 0.531 0.390 No 0.382 0.119 0.800 No 33 74.649 24.123 −0.073 0.815 −0.037 No 0.210 0.390 0.207 No 34 74.659 24.207 0.575 0.019 0.900 Increasing 0.491 0.043 0.200 Decreasing 35 74.643 24.201 −0.015 0.210 −0.150 No 0.374 0.135 0.383 No 36 74.661 24.250 −0.426 0.085 −0.565 No 0.440 0.072 0.550 No 37 74.631 24.248 −0.294 0.241 −0.484 No 0.350 0.105 0.303 No 38 74.687 24.262 −0.352 0.159 −0.490 No 0.220 0.390 0.257 No 39 74.758 24.200 0.167 0.531 0.390 No 0.641 0.009 0.605 Increasing 40 74.722 24.176 −0.167 0.231 −0.050 No 0.055 0.876 0.023 No 41 74.708 24.197 0.025 1.000 0.000 No 0.481 0.033 0.195 Increasing 42 74.705 24.213 −0.315 0.210 −0.150 No −0.093 0.754 −0.036 No 43 74.699 24.229 −0.400 0.085 −0.505 No −0.091 0.040 −0.201 Decreasing 44 74.721 24.261 −0.278 0.273 −0.293 No −0.514 0.035 −0.637 Decreasing 45 74.780 24.180 0.165 0.525 0.300 No −0.553 0.015 −0.557 Decreasing 46 74.763 24.281 −0.224 0.387 −0.217 No 0.073 0.815 0.033 No 47 74.762 24.316 −0.294 0.241 −0.484 No 0.050 0.105 0.065 No 48 74.748 24.331 0.056 0.876 0.014 No 0.000 1.000 0.000 No 49 74.769 24.348 0.256 0.376 0.210 No 0.000 1.000 0.000 No 50 74.679 24.296 −0.093 0.050 −0.080 Decreasing −0.037 0.938 0.002 No 51 74.622 24.290 0.017 0.376 0.250 No 0.032 0.088 0.335 No 52 74.611 24.277 0.056 0.879 0.015 No 0.404 0.101 0.450 No 53 74.664 24.325 0.056 0.376 0.250 No 0.031 0.098 0.305 No 54 74.676 24.336 0.167 0.528 0.250 No 0.110 0.696 100.000 No 55 74.593 24.297 0.056 0.376 0.250 No 0.035 0.058 0.210 Decreasing 56 74.579 24.325 0.130 0.038 0.080 Increasing 0.404 0.101 0.671 No 57 74.556 24.341 0.035 0.835 0.000 No 0.031 0.098 0.305 No 58 74.539 24.319 0.426 0.085 0.242 No 0.019 1.000 0.000 No 59 74.534 24.338 0.062 0.231 0.090 No 0.110 0.696 0.250 No 60 74.575 24.384 0.241 0.347 0.150 No 0.147 0.585 0.300 No 61 74.517 24.375 0.019 1.000 0.000 No 0.205 0.325 0.185 No 62 74.574 24.396 0.241 0.347 0.210 No 0.000 1.000 0.000 No 63 74.690 24.367 −0.094 0.341 −0.084 No 0.350 0.250 0.152 No 64 74.644 24.387 −0.367 0.138 −0.387 No 0.455 0.062 0.883 No 65 74.645 24.387 0.056 0.015 0.230 Increasing −0.205 0.019 −0.250 Decreasing 66 74.687 24.403 −0.330 0.184 −0.655 No 0.404 0.101 0.391 No 67 74.656 24.427 0.056 0.256 0.214 No 0.031 0.098 0.305 No 68 74.608 24.410 0.019 1.000 0.000 No 0.440 0.072 0.320 No 69 74.762 24.387 0.030 0.046 0.314 Increasing 0.600 0.013 0.550 Increasing 70 74.734 24.360 −0.120 0.689 −0.035 No 0.095 0.765 0.045 No 71 74.716 24.385 0.056 0.876 0.014 No −0.091 0.040 −0.225 Decreasing 72 74.702 24.386 −0.241 0.347 −0.252 No 0.521 0.030 0.609 Increasing 73 74.758 24.393 0.150 0.252 0.050 No −0.553 0.020 −0.557 Decreasing 74 74.758 24.391 −0.294 0.241 −0.484 No 0.076 0.820 0.044 No 75 74.750 24.403 −0.110 0.696 −0.036 No −0.050 0.105 −0.065 No *(Here, α= 0.05 and confidence level=95%) -
Akther H, Ahmed MS, Rasheed KBS. 2009. Spatial and temporal analysis of groundwater level fluctuation in Dhaka City, Bangladesh. Asian Journal of Earth Sciences, 3(4): 222-230. doi: 10.3923/ajes.2010.222.230 CGWB. 2012. Groundwater year book-India. Central Ground Water Board Ministry of Water Resources Government of India, Faridabad: 1-63. CGWB. 2013. Ground water resource estimation methodology. Report of the Ground Water Resource Estimation Committee, Central Ground Water Board (CGWB), Ministry of Water Resources, Government of India, New Delhi, India: 1-75. Charizopoulos N, Zagana E, Psilovikos A. 2018. Assessment of natural and anthropogenic impacts in groundwater, utilizing multivariate statistical analysis and inverse distance weighted interpolation modeling: The case of a Scopia basin (Central Greece). Environmental Earth Sciences, 77: 1-18. doi: 10.1007/s12665-017-7169-5 Duong Du Bui, Akira Kawamura, Thanh Ngoc Tong, Hideo Amaguchi, Naoko Nakagawa. 2012. Spatio-temporal analysis of recent groundwater-level trends in the Red River Delta, Vietnam. Hydrogeology Journal, 20: 1635-1650. doi: 10.1007/s10040-012-0889-4 Gautam VK, Awasthi MK. 2020. Evaluation of water resources demand and supply for the districts of central Narmada valley zone. International Journal of Current Microbiology and Applied Sciences, 9(2): 3043-3050. doi: 10.20546/ijcmas.2020.902.350 Gautam VK, Awasthi MK, Trivedi A. 2020. Optimum allocation of water and land resource for maximizing farm income of Jabalpur District, Madhya Pradesh. International Journal of Environment and Climate Change, 10(12): 224-233. doi: 10.9734/IJECC/2020/v10i1230299 Gautam VK, Kothari M, Singh PK, et al. 2021. Determination of geomorphological characteristics of Jakham River Basin using GIS technique. Indian Journal of Ecology, 48(6): 1627-1634. Gautam VK, Kothari, M, Singh PK, et al. 2022. Decadal groundwater level changes in Pratapgarh District of Southern Rajasthan, India. Ecology Environment & Conservation, 28(1): 283-289. Halder S, Roy MB, Roy PK. 2020. Analysis of groundwater level trend and groundwater drought using Standard Groundwater Level Index: A case study of an eastern river basin of West Bengal, India. SN applied science: 507-531. Helsel DR, Hirsch RM. 2002. Statistical methods in water resources. In: Techniques of Water Resources Investigations, Book 4, Chap. 3. US Geological Survey, Reston, VA. Kendall, MG. 1975. Rank correlation methods. London: Griffin. Ketata M, Gueddari M, Bouhlila, R. 2012. Use of geographical information system and water quality index to assess groundwater quality in El khairat deep aquifer (enfidha, central east tunisia). Arabian Journal Geosciences, 5: 1379-1390. doi: 10.1007/s12517-011-0292-9 Kumar P, SK Chandniha, Lohani AK, et al. 2018. Trend analysis of groundwater level using non-parametric tests in alluvial aquifers of Uttar Pradesh, India. Current world environment, 13(1): 44-54. doi: 10.12944/CWE.13.1.05 Mann HB. 1945. Nonparametric tests against trend. Econometrica, 13(3): 245-259. doi: 10.2307/1907187 Maréchal JC, Dewandel B, Ahmed S, et al. 2006. Combining the groundwater budget and water table fluctuation methods to estimate specific yield and natural recharge. Journal of Hydrology, 329(1-2): 281-293. doi: 10.1016/j.jhydrol.2006.02.022 Nema S, Awasthi MK, Nema RK. 2016. Trend analysis of annual and seasonal rainfall in Tawa command area. International Journal of Environment, Agriculture and Biotechnology, (4): 952-957. Panda DK, Mishra A, Kumar A. 2012. Trend quantification in groundwater levels of Gujarat in western India. Hydrological Sciences Journal, 57(7): 1325-1336. doi: 10.1080/02626667.2012.705845 Pathak AA, Dodamani BM. 2018. Trend analysis of groundwater levels and assessment of regional groundwater drought: Ghataprabha River Basin, India. Natural Resources Research. Patle GT, Singh, DK, Sarangi, A, et al. 2015. Time series analysis of groundwater levels and projection of future trend. Journal Geological Society of India, 85: 232-242. doi: 10.1007/s12594-015-0209-4 Pavelic P, Patankar U, Acharya S, et al. 2012. Role of groundwater in buffering irrigation production against climate variability at the basin scale in South-West India. Agriculture Water Manage, 103: 78-87. doi: 10.1016/j.agwat.2011.10.019 Selvam S, Venkatramanan S, Chung SY, et al. 2016. Identification of groundwater contamination sources in Dindugal district of Tamil Nadu, India using GIS and multivariate statistical analyses. Arabian Journal of Geosciences, 9(5): 407. doi: 10.1007/s12517-016-2417-7 Sen PK. 1968. Estimates of regression coefficient based on Kendall’s tau. Journal of the American Statistical Assocication, 63: 1379-1389. doi: 10.1080/01621459.1968.10480934 Thakur GS, Thomas T. 2011. Analysis of groundwater levels for detection of trend in Sagar district, Madhya Pradesh. Journal of the Geological Society of India, 77: 303-308. doi: 10.1007/s12594-011-0038-z