Citation: | Gautam VK, Kothari M, Singh P.K., et al. 2022. Analysis of groundwater level trend in Jakham River Basin of Southern Rajasthan. Journal of Groundwater Science and Engineering, 10(1): 1-9 doi: 10.19637/j.cnki.2305-7068.2022.01.001 |
Akther H, Ahmed MS, Rasheed KBS. 2009. Spatial and temporal analysis of groundwater level fluctuation in Dhaka City, Bangladesh. Asian Journal of Earth Sciences, 3(4): 222-230. doi: 10.3923/ajes.2010.222.230
|
CGWB. 2012. Groundwater year book-India. Central Ground Water Board Ministry of Water Resources Government of India, Faridabad: 1-63.
|
CGWB. 2013. Ground water resource estimation methodology. Report of the Ground Water Resource Estimation Committee, Central Ground Water Board (CGWB), Ministry of Water Resources, Government of India, New Delhi, India: 1-75.
|
Charizopoulos N, Zagana E, Psilovikos A. 2018. Assessment of natural and anthropogenic impacts in groundwater, utilizing multivariate statistical analysis and inverse distance weighted interpolation modeling: The case of a Scopia basin (Central Greece). Environmental Earth Sciences, 77: 1-18. doi: 10.1007/s12665-017-7169-5
|
Duong Du Bui, Akira Kawamura, Thanh Ngoc Tong, Hideo Amaguchi, Naoko Nakagawa. 2012. Spatio-temporal analysis of recent groundwater-level trends in the Red River Delta, Vietnam. Hydrogeology Journal, 20: 1635-1650. doi: 10.1007/s10040-012-0889-4
|
Gautam VK, Awasthi MK. 2020. Evaluation of water resources demand and supply for the districts of central Narmada valley zone. International Journal of Current Microbiology and Applied Sciences, 9(2): 3043-3050. doi: 10.20546/ijcmas.2020.902.350
|
Gautam VK, Awasthi MK, Trivedi A. 2020. Optimum allocation of water and land resource for maximizing farm income of Jabalpur District, Madhya Pradesh. International Journal of Environment and Climate Change, 10(12): 224-233. doi: 10.9734/IJECC/2020/v10i1230299
|
Gautam VK, Kothari M, Singh PK, et al. 2021. Determination of geomorphological characteristics of Jakham River Basin using GIS technique. Indian Journal of Ecology, 48(6): 1627-1634.
|
Gautam VK, Kothari, M, Singh PK, et al. 2022. Decadal groundwater level changes in Pratapgarh District of Southern Rajasthan, India. Ecology Environment & Conservation, 28(1): 283-289.
|
Halder S, Roy MB, Roy PK. 2020. Analysis of groundwater level trend and groundwater drought using Standard Groundwater Level Index: A case study of an eastern river basin of West Bengal, India. SN applied science: 507-531.
|
Helsel DR, Hirsch RM. 2002. Statistical methods in water resources. In: Techniques of Water Resources Investigations, Book 4, Chap. 3. US Geological Survey, Reston, VA.
|
Kendall, MG. 1975. Rank correlation methods. London: Griffin.
|
Ketata M, Gueddari M, Bouhlila, R. 2012. Use of geographical information system and water quality index to assess groundwater quality in El khairat deep aquifer (enfidha, central east tunisia). Arabian Journal Geosciences, 5: 1379-1390. doi: 10.1007/s12517-011-0292-9
|
Kumar P, SK Chandniha, Lohani AK, et al. 2018. Trend analysis of groundwater level using non-parametric tests in alluvial aquifers of Uttar Pradesh, India. Current world environment, 13(1): 44-54. doi: 10.12944/CWE.13.1.05
|
Mann HB. 1945. Nonparametric tests against trend. Econometrica, 13(3): 245-259. doi: 10.2307/1907187
|
Maréchal JC, Dewandel B, Ahmed S, et al. 2006. Combining the groundwater budget and water table fluctuation methods to estimate specific yield and natural recharge. Journal of Hydrology, 329(1-2): 281-293. doi: 10.1016/j.jhydrol.2006.02.022
|
Nema S, Awasthi MK, Nema RK. 2016. Trend analysis of annual and seasonal rainfall in Tawa command area. International Journal of Environment, Agriculture and Biotechnology, (4): 952-957.
|
Panda DK, Mishra A, Kumar A. 2012. Trend quantification in groundwater levels of Gujarat in western India. Hydrological Sciences Journal, 57(7): 1325-1336. doi: 10.1080/02626667.2012.705845
|
Pathak AA, Dodamani BM. 2018. Trend analysis of groundwater levels and assessment of regional groundwater drought: Ghataprabha River Basin, India. Natural Resources Research.
|
Patle GT, Singh, DK, Sarangi, A, et al. 2015. Time series analysis of groundwater levels and projection of future trend. Journal Geological Society of India, 85: 232-242. doi: 10.1007/s12594-015-0209-4
|
Pavelic P, Patankar U, Acharya S, et al. 2012. Role of groundwater in buffering irrigation production against climate variability at the basin scale in South-West India. Agriculture Water Manage, 103: 78-87. doi: 10.1016/j.agwat.2011.10.019
|
Selvam S, Venkatramanan S, Chung SY, et al. 2016. Identification of groundwater contamination sources in Dindugal district of Tamil Nadu, India using GIS and multivariate statistical analyses. Arabian Journal of Geosciences, 9(5): 407. doi: 10.1007/s12517-016-2417-7
|
Sen PK. 1968. Estimates of regression coefficient based on Kendall’s tau. Journal of the American Statistical Assocication, 63: 1379-1389. doi: 10.1080/01621459.1968.10480934
|
Thakur GS, Thomas T. 2011. Analysis of groundwater levels for detection of trend in Sagar district, Madhya Pradesh. Journal of the Geological Society of India, 77: 303-308. doi: 10.1007/s12594-011-0038-z
|
[1] | Cheng-peng Ling, Qiang Zhang, 2024: Exploring the groundwater response to rainfall in a translational landslide using the master recession curve method and cross-correlation function, Journal of Groundwater Science and Engineering, 12, 237-252. doi: 10.26599/JGSE.2024.9280018 |
[2] | Xiu-bo Sun, Chang-lai Guo, Jing Zhang, Jia-quan Sun, Jian Cui, Mao-hua Liu, 2023: Spatial-temporal difference between nitrate in groundwater and nitrogen in soil based on geostatistical analysis, Journal of Groundwater Science and Engineering, 11, 37-46. doi: 10.26599/JGSE.2023.9280004 |
[3] | She-ming Chen, Hong-wei Liu, Fu-tian Liu, Jin-jie Miao, Xu Guo, Zhou Zhang, Wan-jun Jiang, 2022: Using time series analysis to assess tidal effect on coastal groundwater level in Southern Laizhou Bay, China, Journal of Groundwater Science and Engineering, 10, 292-301. doi: 10.19637/j.cnki.2305-7068.2022.03.007 |
[4] | Shima Nasiri, Hossein Ansari, Ali Naghi Ziaei, 2022: Determination of water balance equation components in irrigated agricultural watersheds using SWAT and MODFLOW models : A case study of Samalqan plain in Iran, Journal of Groundwater Science and Engineering, 10, 44-56. doi: 10.19637/j.cnki.2305-7068.2022.01.005 |
[5] | Wondmagegn Taye Abebe, 2022: Evaluation of groundwater resource potential by using water balance model: A case of Upper Gilgel Gibe Watershed, Ethiopia, Journal of Groundwater Science and Engineering, 10, 209-222. doi: 10.19637/j.cnki.2305-7068.2022.03.001 |
[6] | Jin-xing Guo, Zhi-ping Li, Catalin Stefan, 2022: Managed aquifer recharge (MAR) applications in China–achievements and challenges, Journal of Groundwater Science and Engineering, 10, 57-69. doi: 10.19637/j.cnki.2305-7068.2022.01.006 |
[7] | M Shahbaz Akhtar, Yoshitaka Nakashima, Makoto Nishigaki, 2021: Clogging mechanisms and preventive measures in artificial recharge systems, Journal of Groundwater Science and Engineering, 9, 181-201. doi: 10.19637/j.cnki.2305-7068.2021.03.002 |
[8] | Hao ZHOU, Yong WU, Feng HUANG, Xue-fang TANG, 2021: Experimental simulation and dynamic model analysis of Cadmium (Cd) release in soil affected by rainfall leaching in a coal-mining area, Journal of Groundwater Science and Engineering, 9, 65-72. doi: 10.19637/j.cnki.2305-7068.2021.01.006 |
[9] | KHELFAOUI Hakim, DAJBRI Larbi, LAKHAL Fatima Zohra, CHAFFAI Hicham, HANI Azzedine, SAYAD Lamine, 2020: Determination of the origin of mineralization and groundwater salinity in the Adrar region in the southwest of Algeria, Journal of Groundwater Science and Engineering, 8, 158-171. doi: 10.19637/j.cnki.2305-7068.2020.02.007 |
[10] | SAMI Guellouh, ABDELWAHHAB Filali, Med ISSAM Kalla, 2020: Estimation of the peak flows in the catchment area of Batna (Algeria), Journal of Groundwater Science and Engineering, 8, 79-86. doi: 10.19637/j.cnki.2305-7068.2020.01.008 |
[11] | Mehdi Bahrami, Elmira Khaksar, Elahe Khaksar, 2020: Spatial variation assessment of groundwater quality using multivariate statistical analysis(Case Study: Fasa Plain, Iran), Journal of Groundwater Science and Engineering, 8, 230-243. doi: 10.19637/j.cnki.2305-7068.2020.03.004 |
[12] | Negar Fathi, Mohammad Bagher Rahnama, Mohammad Zounemat Kermani, 2020: Spatial analysis of groundwater quality for drinking purpose in Sirjan Plain, Iran by fuzzy logic in GIS, Journal of Groundwater Science and Engineering, 8, 67-78. doi: 10.19637/j.cnki.2305-7068.2020.01.007 |
[13] | Yacob T Tesfaldet, Avirut Puttiwongrak, Tanwa Arpornthip, 2020: Spatial and temporal variation of groundwater recharge in shallow aquifer in the Thepkasattri of Phuket, Thailand, Journal of Groundwater Science and Engineering, 8, 10-19. doi: 10.19637/j.cnki.2305-7068.2020.01.002 |
[14] | LI Yang, KANG Feng-Xin, ZOU An-de, 2019: Isotope analysis of nitrate pollution sources in groundwater of Dong’e geohydrological unit, Journal of Groundwater Science and Engineering, 7, 145-154. doi: 10.19637/j.cnki.2305-7068.2019.02.005 |
[15] | LIU Yu, CHENG Yan-pei, GE Li-qiang, 2018: Analysis on exploitation status, potential and strategy of groundwater resources in the five countries of Central Asia, Journal of Groundwater Science and Engineering, 6, 49-57. doi: 10.19637/j.cnki.2305-7068.2018.01.006 |
[16] | JIANG Ti-sheng, QU Ci-xiao, WANG Ming-yu, SUN Yan-wei, HU Bo, CHU Jun-yao, 2017: Analysis on temporal and spatial variations of groundwater hydrochemical characteristics in the past decade in southern plain of Beijing, China, Journal of Groundwater Science and Engineering, 5, 235-248. |
[17] | WU Jian-qiang, WU Xia-yi, 2016: Geological environment impact analysis of a landfill by the Yangtze River, Journal of Groundwater Science and Engineering, 4, 96-102. |
[18] | LIU Chun-yan, SUN Ji-chao, JING Ji-hong, ZHANG Ying, GUO Wei-xuan, 2016: Distribution characteristics and source of BTEX in groundwater in Guangzhou, Guangdong Province, P. R. China, Journal of Groundwater Science and Engineering, 4, 238-246. |
[19] | Jiansheng Shi, Hongtao Liu, Zhiyuan Liu, Tieliu Chen, 2013: Application of the “Accurate Control Groundwater Resources” Theory in Containment of Groundwater Resource Exhaustion Trend, Journal of Groundwater Science and Engineering, 1, 1-10. |
[20] | Yan Zhang, Shuai Song, Jing Li, Fadong Li, Guangshuai Zhao, Qiang Liu, 2013: Stable Isotope Composition of Rainfall, Surface Water and Groundwater along the Yellow River, Journal of Groundwater Science and Engineering, 1, 82-88. |
JGSE-ScholarOne Manuscript Launched on June 1, 2024.