Citation: | Ma F, Wang GL, Sun HL, et al. 2022. Indication of hydrogen and oxygen stable isotopes on the characteristics and circulation patterns of medium-low temperature geothermal resources in the Guanzhong Basin, China. Journal of Groundwater Science and Engineering, 10(1): 70-86 doi: 10.19637/j.cnki.2305-7068.2022.01.007 |
Chandrajith R, Barth JAC, Subasinghe ND, et al. 2013. Geochemical and isotope characterization of geothermal spring waters in Sri Lanka: Evidence for steeper than expected geothermal gradients. Journal of Hydrology, 476: 360-369. doi: 10.1016/j.jhydrol.2012.11.004
|
Clayton RN, Steiner A. 1975. Oxygen isotope studies of the geothermal system at Wairakei, New Zealand. Geochimicaet Cosmochimica Acta, 39(8): 1179-1186. doi: 10.1016/0016-7037(75)90059-9
|
Craig H. 1961. Isotopic variations in meteoric waters. Science, 133(3465): 1702-1703. doi: 10.1126/science.133.3465.1702
|
Craig H. 1966. Isotopic composition and origin of the Red Sea and Salton Sea geothermal brines. Science, 154(3756): 1544-1548. doi: 10.1126/science.154.3756.1544
|
Dansgaard W. 1964. Stable isotopes in precipitation. Tellus, 15(4): 436-468.
|
Diamond RE, Harris C. 2000. Oxygen and hydrogen isotope geochemistry of thermal springs of the Western Cape, South Africa: Recharge at high altitude? Journal of African Earth Sciences, 31(3): 467-481.
|
Dotsika E, Poutoukis D, Raco B. 2010. Fluid geochemistry of the Methana Peninsula and Loutraki geothermal area, Greece. Journal of Geochemical Exploration, 104(3): 97-104. doi: 10.1016/j.gexplo.2010.01.001
|
Dotsika E. 2012. Isotope and hydrochemical assessment of the Samothraki Island geothermal area. Journal of Volcanology and Geothermal Research, 233-234: 18-26. doi: 10.1016/j.jvolgeores.2012.04.017
|
Giggenbach WF, Glover RB. 1992. Tectonic regime and major processes governing the chemistry of water and gas discharges from the Rotorua geothermal field, New Zealand. Geothermics, 21(1-2): 121-140. doi: 10.1016/0375-6505(92)90073-I
|
Guo Q, Pang ZH, Wang YC, et al. 2017. Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in Eastern Himalayas. Applied Geochemistry, 81: 63-75. doi: 10.1016/j.apgeochem.2017.03.007
|
Hu Y, Ma ZY, Yu J, et al. 2009. Estimation of the making-up temperature of geothermy water and the thermal reservoir temperature in Guanzhong Basin. Journal of Earth Sciences and Environment, 31(02): 173-176.
|
Jiao T, Zpab C, YwabC, et al. 2019. Fluid geochemistry of the Cuopu high temperature geothermal system in the eastern Himalayan syntaxis with implication on its genesis. Applied Geochemistry, 110: 104422. doi: 10.1016/j.apgeochem.2019.104422
|
Jiang G, Gao P, Rao S, et al. 2017. Compilation of heat flow data in the continental area of China (4th edition). Chinese journal of geophysics-chinese edition, 59(7): 2892-2910.
|
Komatsu S, Okano O, Ueda A. 2021. Chemical and isotopic (H, O, S, and Sr) analyses of groundwaters in a non-volcanic region, Okayama prefecture, Japan: Implications for geothermal exploration. Geothermics, 91: 102005. doi: 10.1016/j.geothermics.2020.102005
|
Li XC, Ma ZY, Zhang XL, et al. 2016. Genetic model of the Dongda geothermal field in Guanzhong Basin, Shaanxi Province. Geology in China, 43(06): 2082-2091.
|
Liu F, Jin H, Mu G. 2009. Investigation and evaluation report of geothermal resources in Guanzhong Basin. Shaanxi Province. Xi’an: Shaanxi Institute of Geo-Environment Monitoring.
|
Luo L, Pang ZH, Liu JX, et al. 2017. Determining the recharge sources and circulation depth of thermal waters in Xianyang geothermal fifield in Guanzhong Basin: The controlling role of Weibei Fault. Geothermics, 69: 55-64.
|
Majumdar N, Majumdar RK, Mukherjee AL, et al. 2005. Seasonal variations in the isotopes of oxygen and hydrogen in geothermal waters from Bakreswar and Tantloi, Eastern India: Implications for groundwater characterization. Journal of African Earth Sciences, 25(2): 269-278.
|
Majumdar N, Mukherjee AL, Majumdar RK. 2009. Mixing hydrology and chemical equilibria in Bakreswar geothermal area, Eastern India. Journal of Volcanology and Geothermal Research, 183(3): 201-212.
|
Ma Y. 2007. Water-rock interaction and genesis of low-medium temperature thermal groundwater in carbonate reservoir. China University of Geosciences.
|
Ma ZY, Zhang XL, He D, et al. 2016. A study of 36Cl age for the deep geothermal water in the Guanzhong Basin. Hydrogeology and Engineering Geology, 43(01): 157-163.
|
Ma ZY, Fang JJ, Niu GL, et al. 2006. Classification of thermal water in Guanzhong Area, Shaanxi Province. Coal GeolExplor, 33: 54-58.
|
Ma ZY, Wang XG, Su Y, et al. 2008. Oxygen and hydrogen isotope exchange and its controlling factors in subsurface geothermal waters in the central Guanzhong Basin, Shaanxi, China. Geological Bulletin of China, 27(06): 888-894.
|
Pang ZH, Fan ZC, Wang JX. 1990. The study on stable oxygen and hydrogen isotopes in the Zhangzhou Basin hydrothermal system. Acta Petrol Sin, 11(04): 75-84.
|
Pinti DL, Castro MC, Shoaukar-Stash O, et al. 2013. Evolution of the geothermal fluids at Los Azufres, Mexico, as traced by noble gas isotopes, δ18O, δD, δ13C and 87Sr/86Sr. Volcanology and Geothermal Research, 249: 1-11. doi: 10.1016/j.jvolgeores.2012.09.006
|
Pinti D L, Shouakar-Stash O, Castro M C, et al. 2020. The bromine and chlorine isotopic composition of the mantle as revealed by deep geothermal fluids. Geochimica et Cosmochimica Acta, 276: 14-30. doi: 10.1016/j.gca.2020.02.028
|
Qin DJ, Pan ZH, Turner JV, et al. 2005. Isotopes of geothermal water in Xi’an area and implications on its relation to karstic groundwater in North Mountains. Acta Petrologica Sinica, 21(05): 1489-1500.
|
Richard L, Pinti D L, Helie J F, et al. 2019. Variability of deep carbon sources in Mexican geothermal fluids. Journal of Volcanology & Geothermal Research, 370(1): 1-12.
|
Singh P, Mukherjee S. 2019. Chemical signature detection of groundwater and geothermal waters for evidence of crustal deformation along fault zones. Journal of Hydrology, 582(4): 124459.
|
Sun HL, Ma F, Liu Z, et al. 2015. The distribution and enrichment characteristics of fluoride in geothermal active area in Tibet. China Environmental Science, 35(01): 251-259.
|
Sun HL, Ma F, Lin WJ, et al. 2015. Geochemical characteristics and application of geothermal temperature scales of high-temperature geothermal fields in Tibet. GeolSci Tech Inf, 34: 171-177.
|
Sun ZX, Li XL. 2001. Studies of geothermal waters in Jiangxi Province using isotope techniques. Science in China Series E: Technological Sciences, 44(1): 144-150.
|
Tan H, Zhang W, Chen J, et al. 2012. Isotope and geochemical study for geothermal assessment of the Xining basin of the northeastern Tibetan Plateau. Geothermics, 42: 47-55. doi: 10.1016/j.geothermics.2012.01.001
|
Wang C, Zheng M, Zhang X, et al. 2020. O, H, and Sr isotope evidence for origin and mixing processes of the Gudui geothermal system, Himalayas, China. Geoscience Frontiers, 11: 1175-1187. doi: 10.1016/j.gsf.2019.09.013
|
Wang GL, Liu ZM, Lin WJ. 2004. Tectonic control of geothermal resources in the peripheral of Ordos Basin. Acta Geologica Sinica, 78(01): 44-51.
|
Wang GL, Zhang W, Liang JY, et al. 2017. Evaluation of geothermal resources potentials in China. Acta Geoscientica Sinica, 38(4): 449-459.
|
Wang J. 1996. Low-temperature convection geothermal system. Earth Sci Front., 3: 96-100.
|
Wang JX, Huang SP. 1989. Statistical analysis of continental heat flow data from China. Chinese Science Bulletin, 34(07): 582-587.
|
Yan H, Ma Z, Li T, et al. 2012. Environmental isotope hydrogeochemical characteristics and instructions of geothermal water in Xianyang Urban Area. Advanced Materials Research, 1793: 4161-4164.
|
Yao TD, Xu BQ, Pu JC. 2001. Temperature changes of orbital and sub-orbital time scales recorded in the Guliya Ice Core on the Qinghai-Tibetan Plateau. Science in China (Series D), 31: 288-294.
|
Zhang S. 1989. Study of the hydrogen-oxygen isotope composition characteristics of modern atmospheric precision in Shaanxi Province. Shaanxi Geology, 7: 57-66.
|
[1] | Ying-nan Zhang, Yan-guang Liu, Kai Bian, Guo-qiang Zhou, Xin Wang, Mei-hua Wei, 2024: Development status and prospect of underground thermal energy storage technology, Journal of Groundwater Science and Engineering, 12, 92-108. doi: 10.26599/JGSE.2024.9280008 |
[2] | Mei-hui Zhang, Shi-yang Zhou, Dan-dan Liu, Ying Zhang, Yu-xi Zhang, Xi Chen, Hui-wei Wang, Bei Li, Wei Kang, Bing Yi, Wan-peng Shi, 2024: Characteristics and genesis of groundwater salinization in coastal areas of the Lower Reaches of Oujiang Basin, Journal of Groundwater Science and Engineering, 12, 190-204. doi: 10.26599/JGSE.2024.9280015 |
[3] | Chun-lei GUI, Zhen-xing WANG, Rong MA, Xue-feng ZUO, 2021: Aquifer hydraulic conductivity prediction via coupling model of MCMC-ANN, Journal of Groundwater Science and Engineering, 9, 1-11. doi: 10.19637/j.cnki.2305-7068.2021.01.001 |
[4] | Habtamu Semunigus Demisse, Abebe Temesgen Ayalew, Melkamu Teshome Ayana, Tarun Kumar Lohani, 2021: Extenuating the parameters using HEC-HMS hydrological model for ungauged catchment in the central Omo-Gibe Basin of Ethiopia, Journal of Groundwater Science and Engineering, 9, 317-325. doi: 10.19637/j.cnki.2305-7068.2021.04.005 |
[5] | Xin Ma, Dong-guang Wen, Guo-dong Yang, Xu-feng Li, Yu-jie Diao, Hai-hai Dong, Wei Cao, Shu-guo Yin, Yan-mei Zhang, 2021: Potential assessment of CO2 geological storage based on injection scenario simulation: A case study in eastern Junggar Basin, Journal of Groundwater Science and Engineering, 9, 279-291. doi: 10.19637/j.cnki.2305-7068.2021.04.002 |
[6] | SUN Dong, LIU Xin-ze, YANG Hai-jun, CAO Nan, ZHANG Zhi-peng, CHEN Yin-song, LI Da-meng, 2019: Analysis of hydrogeolgical characteristics and water environmental impact pathway of typical shale gas exploration and development zones in Sichuan Basin, China, Journal of Groundwater Science and Engineering, 7, 195-213. doi: 10.19637/j.cnki.2305-7068.2019.03.001 |
[7] | SOSI Benjamin, BARONGO Justus, GETABU Albert, MAOBE Samson, 2019: Electrical-hydraulic conductivity model for a weathered-fractured aquifer system of Olbanita, Lower Baringo Basin, Kenya Rift, Journal of Groundwater Science and Engineering, 7, 360-372. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.007 |
[8] | Nouayti Abderrahime, Khattach Driss, Hilali Mohamed, Nouayti Nordine, 2019: Mapping potential areas for groundwater storage in the High Guir Basin (Morocco):Contribution of remote sensing and geographic information system, Journal of Groundwater Science and Engineering, 7, 309-322. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.002 |
[9] | LI Bo, LI Xue-mei, 2018: Characteristics of karst groundwater system in the northern basin of Laiyuan Spring area, Journal of Groundwater Science and Engineering, 6, 261-269. doi: 10.19637/j.cnki.2305-7068.2018.04.002 |
[10] | HOU Guang-cai, YIN Li-he, XU Dan-dan, 2017: Hydrogeology of the Ordos Basin, China, Journal of Groundwater Science and Engineering, 5, 104-115. |
[11] | TAO Hong, ZHENG Miao-miao, FAN Li-min, LI Wen-li, DING Jia, LI Hui, HE Xu-bo, TAO Fu-ping, 2017: Research on quality changes and influencing factors of groundwater in the Guanzhong Basin, Journal of Groundwater Science and Engineering, 5, 296-302. |
[12] | LIU Ji-chao, SHI Jian-sheng, GAO Ye-xin, REN Zhan-bing, 2016: Exploration on compound water circulation system to solve water resources problems of North China Plain, Journal of Groundwater Science and Engineering, 4, 229-237. |
[13] | LI Duo, WEI Ai-hua, 2016: Analysis of influence of the power plant ash storage yard on groundwater environment, Journal of Groundwater Science and Engineering, 4, 35-40. |
[14] | WANG Ji-ning, MENG Yong-hui, 2016: Characteristics analysis and model prediction of sea-salt water intrusion in lower reaches of the Weihe River, Shandong Province, China, Journal of Groundwater Science and Engineering, 4, 149-156. |
[15] | LIU Feng, CUI Ya-li, SHAO Jing-li, ZHANG Ge, 2015: Research on hydrogen and oxygen isotopes of paleoclimate reconstruction in Nuomuhong, Journal of Groundwater Science and Engineering, 3, 238-246. |
[16] | ZHANG Chun-chao, WANG Wen-Ke, SUN Yi-bo, LI Xiang-quan,HOU Xin-wei, 2015: Processes of hydrogeochemical evolution of groundwater in the Guanzhong Basin, China, Journal of Groundwater Science and Engineering, 3, 136-146. |
[17] | ZHANG Wei, 2014: Establishment of an assessment method for site-scale suitability of CO2 geological storage, Journal of Groundwater Science and Engineering, 2, 19-25. |
[18] | Qing YI, Yan-pei CHENG, Jian-kang ZHANG, 2014: Analysis on the Salt Content Characteristics of Southern Saline-Alkali Soil in Datong Basin and Its Causes, Journal of Groundwater Science and Engineering, 2, 63-72. |
[19] | SU Chen, XU Cheng-yun, CHEN Zong-yu, WEI wen, 2014: Comparison of hydrogeological characteristics between the Sanjiang Plain and the Amur River Basin, Journal of Groundwater Science and Engineering, 2, 26-34. |
[20] | Lihe Yin, Hongyun Ma, Jiaqiu Dong, Xiaoyong Wang, Ying Li, 2013: Using a Particle Tracking Method to Quantify Groundwater Circulation rates: a Case Study in the Ordos Plateau, Journal of Groundwater Science and Engineering, 1, 97-101. |
JGSE-ScholarOne Manuscript Launched on June 1, 2024.