• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ EBSCO Scopus GeoRef AJ CNKI
Advanced Search
Volume 12 Issue 4
Dec.  2024
Turn off MathJax
Article Contents
Zhang ZX, Wu L, Kong XK, et al. 2024. Impact of Cr(III) complexation with organic acid on its adsorption in silts and fine sands. Journal of Groundwater Science and Engineering, 12(4): 347-359 doi:  10.26599/JGSE.2024.9280026
Citation: Zhang ZX, Wu L, Kong XK, et al. 2024. Impact of Cr(III) complexation with organic acid on its adsorption in silts and fine sands. Journal of Groundwater Science and Engineering, 12(4): 347-359 doi:  10.26599/JGSE.2024.9280026

Impact of Cr(III) complexation with organic acid on its adsorption in silts and fine sands

doi: 10.26599/JGSE.2024.9280026
More Information
  • Corresponding author: kongxiangke@mail.cgs.gov.cn
  • Received Date: 2024-03-20
  • Accepted Date: 2024-08-17
  • Available Online: 2024-12-06
  • Publish Date: 2024-12-09
  • Trivalent chromium (Cr(III)) can form stable soluble complexes with organic components, altering its adsorption properties in the water-soil environment. This increases the risk of Cr(III) migrating to deeper soils and transforming into toxic Cr(VI) due to the presence of manganese oxides in sediments. In this study, Citric Acid (CA) was selected as a representative organic ligand to prepare and characterize Cr(III)-CA complexes. The characteristics, mechanisms and environmental factors influencing the adsorption of Cr(III)-CA on porous media (silts and fine sands) were investigated in the study. The results show that Cr(III) coordinates with CA at a 1:1 molar ratio, forming stable and soluble Cr(III)-CA complexes. Compared to Cr(III) ions, the equilibrium adsorption capacity of Cr(III)-CA is an order of magnitude lower in silts and fine sands. The adsorption of Cr(III)-CA in silts and fine sands is dominated by chemical adsorption of monolayers, following the pseudo-second-order kinetic equation and the Langmuir isotherm adsorption model. Varying contents of clay minerals and iron-aluminum oxides prove to be the main causes of differences in adsorption capacity of Cr(III)-CA in silts and fine sands. Changes in solution pH affect the adsorption rate and capacity of Cr(III)-CA by altering its ionic form. The adsorption process is irreversible and only minimally influenced by ionic strength, suggesting that inner-sphere complexation serves as the dominant Cr(III)-CA adsorption mechanism.
  • 加载中
  • Cooper E, Vasudevan D. 2009. Hydroxynaphthoic acid isomer sorption onto goethite. Journal of Colloid and Interface Science, 333(1): 85−96. DOI: 10.1016/j.jcis.2009.02.023.
    Cao XH, Guo J, Mao JD, et al. 2011. Adsorption and mobility of Cr(III)-organic acid complexes in soils. Journal of Hazardous Materials, 192(3): 1533−1548. DOI: 10.1016/j.jhazmat.2011.06.076.
    Chiavola A, Amato E, Boni M. 2019. Comparison of different iron oxide adsorbents for combined arsenic, vanadium and fluoride removal from drinking water. International Journal of Environmental Science & Technology, 16(10): 6053−6064. DOI: 10.1007/s13762-019-02316-4.
    Dai RN, Liu J, Yu CY, et al. 2009. A comparative study of oxidation of Cr(III) in aqueous ions, complex ions and insoluble compounds by manganese-bearing mineral (birnessite). Chemosphere, 76(4): 536−541. DOI: 10.1016/j.chemosphere.2009.03.009.
    Gustafsson J, Persson I, Oromieh A, et al. 2014. Chromium(III) complexation to natural organic matter: Mechanisms and modeling. Environment Science & Technology, 48: 1753−1761. DOI: 10.1021/es404557e.
    Gérard F. 2016. Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils—A myth revisited. Geoderma, 262(15): 213−226. DOI: 10.1016/j.geoderma.2015.08.036.
    Guo HM, Chen Y, Hu HY, et al. 2020. High hexavalent chromium concentration in groundwater from a deep aquifer in the baiyangdian basin of the north China plain. Environmental Science & Technology, 54(16): 10068−10077. DOI: 10.1021/acs.est.0c02357.
    Hizal J, Apak R. 2013. Kinetic investigation and surface complexation modeling of Cd(Ⅱ) adsorption onto feldspar. Fresenius Environmental Bulletin, 22(3): 766−771. DOI: 10.1021/ma00183a057.
    Hao YY, Ma HR, Wang Q, et al. 2022. Complexation behavior and removal of organic-Cr(III) complexes from the environment: A review. Ecotoxicology and Environmental Safety, 240: 113676. DOI: 10.1016/j.ecoenv.2022.113676.
    James B, Bartlett R. 1983. Behavior of chromium in soils: V. Fate of organically complexed Cr(III) added to soil. Journal of Environmental Quality, 12(2): 169−172. DOI: 10.2134/jeq1983.00472425001200020003x.
    Kah M, Sigmund G, Xiao F, et al. 2017. Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials. Water Research, 124: 673−692. DOI: 10.1016/j.watres.2017.07.070.
    Kanagaraj G, Elango L. 2019. Chromium and fluoride contamination in groundwater around leather tanning industries in southern India: implications from stable isotopic ratio Delta Cr-53/Delta Cr-52, geochemical and geostatistical modelling. Chemosphere, 220: 943−953. DOI: 10.1016/j.chemosphere.2018.12.105.
    Kong XK, Li CH, Wang P, et al. 2019. Soil pollution characteristics and microbial responses in a vertical profile with long-term tannery sludge contamination in Hebei, China. International Journal of Environmental Research and Public Health, 16(4): 563−570. DOI: 10.3390/ijerph16040563.
    Kong XK, Wang Y, Ma LS, et al. 2020. Leaching behaviors of chromium (III) and ammonium-nitrogen from a tannery sludge in north China: Comparison of batch and column investigations. International Journal of Environmental Research and Public Health, 17: 6003. DOI: 10.3390/ijerph17166003.
    Luo Z, Wadhawan A, Bouwer E. 2010. Sorption behavior of nine chromium (III) organic complexes in soil. International Journal of Environmental Science and Technology, 7(1): 1−10. DOI: 10.1007/BF03326111.
    Li F. 2009. Synthesis, characterization and preliminary application of several organic chromium complexes. MS thesis, Zhenjiang: Jiangsu University: 23. (in Chinese)
    Li H, Han ZT, Deng Q, et al. 2023. Assessing the effectiveness of nanoscale zero-valent iron particles produced by green tea for Cr(VI)-contaminated groundwater remediation. Journal of Groundwater Science and Engineering, 11(1): 55−67. DOI: 10.26599/JGSE.2023.9280006.
    Liu W, Zhang J, Zhang C, et al. 2011. Sorption of norfloxacin by lotus stalk-based activated carbon and iron-doped activated alumina: Mechanisms, isotherms and kinetics. Chemical Engineering Journal, 171(2): 431–438. DOI: 10.1016/j.cej.2011.03.099.
    Li BR, Liao P, Liu P, et al. 2022. Formation, aggregation and transport of NOM-Cr(III) colloids in aquatic environments. Environmental Science-Nano, 9(3): 1133−1145. DOI: 10.1039/d1en00861g.
    Martin S, Shchukarev A, Hanna K, et al. 2015. Kinetics and mechanisms of ciprofloxacin oxidation on hematite surfaces. Environment Science & Technology, 49(20): 12197−12205. DOI: 10.1021/acs.est.5b02851.
    Merdoud O, Cameselle C, Boulakradeche MO, et al. 2016. Removal of heavy metals from contaminated soil by electro dialytic remediation enhanced with organic acids. Environmental Science-Processes & Impacts, 18(11): 1440−1448. DOI: 10.1039/c6em00380j.
    Marsac R, Martin S, Boily J, et al. 2016. Oxolinic acid binding at goethite and akaganeite surfaces: Experimental study and modeling. Environmental Science & Technology, 50(2): 660−678. DOI: 10.1021/acs.est.5b04940.
    Ma H, Zhou J, Hua L, et al. 2017. Chromium recovery from tannery sludge by bioleaching and its reuse in tanning process. Journal of Cleaner Production, 142(8): 2752−2760. DOI: 10.1016/j.jclepro.2016.10.193.
    Manoj S, RamyaPriya R, Elango L. 2021. Long-term exposure to chromium contaminated waters and the associated human health risk in a highly contaminated industrialized region. Environmental Science and Pollution Research, 28(4): 4276−4288. DOI: 10.1007/s11356-020-10762-8.
    Puzon G, Tokala R, Zhang H, et al. 2008. Mobility and recalcitrance of organo-chromium(III) complexes. Chemosphere, 70(11): 2054−2059. DOI: 10.1016/j.chemosphere.2007.09.010.
    Pantazopoulou E, Zouboulis A. et al. 2017. Chemical toxicity and ecotoxicity evaluation of tannery sludge stabilized with ladle furnace slag. Journal of Environmental Management, 216: 257−262. DOI: 10.1016/j.jenvman.2017.03.077.
    Qiang TT, Bu QQ, Ren LF, et al. 2014. Adsorption behaviors of Cr(III) on carboxylated collagen fiber. Journal of Applied Polymer Science, 131(11): 2928−2935. DOI: 10.1002/app.40285.
    Reijonen I, Hartikainen H. 2016. Oxidation mechanisms and chemical bioavailability of chromium in agricultural soil-pH as the master variable. Applied Geochemistry, 74: 84−93. DOI: 10.1016/j.apgeochem.2016.08.017.
    Schwab A, He Y, Banks M. 2005. The influence of organic ligands on the retention of lead in soil. Chemosphere, 61(6): 856−866. DOI: 10.1016/j.chemosphere.2005.04.098.
    Sethunathan N, Megharaj M, Smith L, et al. 2005. Microbial role in the failure of natural attenuation of Chromium(Ⅵ) in long-term tannery waste contaminated soil. Agriculture, Ecosystems & Environment, 105(4): 657–661. DOI: 10.1016/j.agee.2004.08.008.
    Shashirekha V, Sridharan MR, Swamy, M. 2015. Biochemical response of cyanobacterial species to trivalent chromium stress. Algal Research, 12: 421−430. DOI: 10.1016/j.algal.2015.10.003.
    Shi GW, Li YS, Liu YC, et al. 2023. Predicting the speciation of ionizable antibiotic ciprofloxacin by biochars with varying carbonization degrees. RSC Advances, 13: 9892−9902. DOI: 10.1039/d3ra00122a.
    Tripathi S, Chaurasia S. 2020. Detection of chromium in surface and groundwater and its bio-absorption using bio-wastes and vermiculite. Engineering Science and Technology-an International Journal-Jestech, 23(5): 1153−1161. DOI: 10.1016/j.jestch.2019.12.002.
    Marsac R, Martin S, Boily J, et al. 2010. Oxolinic acid binding at goethite and akaganeite surfaces: Experimental study and modeling. Environmental Science & Technology, 29(6): 997−1003. (in Chinese)
    Wang CL, Liu CL, Pang YJ, et al. 2013. Adsorption behavior of hexavalent chromium in vadose zone. Journal of Groundwater Science and Engineering, 1(3): 83−88. DOI: 10.26599/JGSE.2013.9280034.
    Wang DD, He SY, Shan C, et al. 2016. Chromium speciation in tannery effluent after alkaline precipitation: Isolation and characterization. Journal of Hazardous Materials, 316: 169−177. DOI: 10.1016/j.jhazmat.2016.05.021.
    Wang P, Kong XK, Ma LS, et al. 2022. Metal(loid)s removal by zeolite-supported iron particles from mine contaminated groundwater: Performance and mechanistic insights. Environmental Pollution, 313: 120155. DOI:  10.1016/j.envpol.2022.120155.
    Yang SY, Cheng Y, Zou HT, et al. 2022. Synergistic roles of montmorillonite and organic matter in reducing bioavailable state of chromium in tannery sludge. Environmental Science and Pollution Research, 29(58): 87298−87309. DOI: 10.1007/s11356-022-21897-1.
    Zeng J, Gou M, Tang YQ, et al. 2016. Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community. Bioresource Technology, 218: 859−866. DOI: 10.1016/j.biortech.2016.07.051.
    Zhang W, Chen Z, Han ZT, et al. 2022. Adsorption characteristics of Pb(Ⅱ) and Cd(Ⅱ) in water bodies onto biochars derived from 7-ACA fermented residue. Safety and Environmental Engineering, 29(4): 212−220. (in Chinese) DOI: 10.13578/i.cnki.issn.1671-1556.20210694.
  • 2305-7068/© Journal of Groundwater Science and Engineering Editorial Office. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)

  • Relative Articles

    [1] Hui Li, Zhan-tao Han, Qiang Deng, Chun-xiao Ma, Xiang-ke Kong, 2023: Assessing the effectiveness of nanoscale zero-valent iron particles produced by green tea for Cr(VI)-contaminated groundwater remediation, Journal of Groundwater Science and Engineering, 11, 55-67.  doi: 10.26599/JGSE.2023.9280006
    [2] Yu-kun Sun, Feng Liu, Hua-jun Wang, Xin-zhi Gao, 2022: Numerical simulation of operation performance on production and injection of a double well geothermal system in Kailu Basin, Inner Mongolia, Journal of Groundwater Science and Engineering, 10, 196-208.  doi: 10.19637/j.cnki.2305-7068.2022.02.008
    [3] Chu Yu, Li-jie Wu, Yi-long Zhang, Xiu-ya Wang, Zhan-chuan Wang, Zhou Zhang, 2022: Effect of groundwater on the ecological water environment of typical inland lakes in the Inner Mongolian Plateau, Journal of Groundwater Science and Engineering, 10, 353-366.  doi: 10.19637/j.cnki.2305-7068.2022.04.004
    [4] Marios C Kirlas, 2021: Assessment of porous aquifer hydrogeological parameters using automated groundwater level measurements in Greece, Journal of Groundwater Science and Engineering, 9, 269-278.  doi: 10.19637/j.cnki.2305-7068.2021.04.001
    [5] Hong-bo HAO, Jie LV, Yan-mei CHEN, Chuan-zi WANG, Xiao-rui HUANG, 2021: Research advances in non-Darcy flow in low permeability media, Journal of Groundwater Science and Engineering, 9, 83-92.  doi: 10.19637/j.cnki.2305-7068.2021.01.008
    [6] MIAO Qing-zhuang, ZHOU Xiao-ni, WANG Gui-ling, ZHANG Wei, LIU Feng, XING Lin-xiao, 2019: Research on changes of hydrodynamics and ion-exchange adsorption in Brackish-Water Interface, Journal of Groundwater Science and Engineering, 7, 94-105.  doi: 10.19637/j.cnki.2305-7068.2019.02.001
    [7] YAN Xiao-san, QIAN Jia-zhong, MA Lei, 2019: Experimental study on the velocity-dependent dispersion of the solute transport in different porous media, Journal of Groundwater Science and Engineering, 7, 106-114.  doi: 10.19637/j.cnki.2305-7068.2019.02.002
    [8] GUO Si-jia, GUO Gui-ping, 2018: Enhancement of gaseous mercury (Hg0) adsorption for the modified activated carbons by surface acid oxygen function groups, Journal of Groundwater Science and Engineering, 6, 104-114.  doi: 10.19637/j.cnki.2305-7068.2018.02.004
    [9] MA Zhi-yuan, XU Yong, ZHAI Mei-jing, WU Min, 2017: Clogging mechanism in the process of reinjection of used geothermal water: A simulation research on Xianyang No.2 reinjection well in a super-deep and porous geothermal reservoir, Journal of Groundwater Science and Engineering, 5, 311-325.
    [10] TONG Shao-qing, DONG Yan-hui, ZHANG Qian, SONG Fan, 2017: Visualizing complex pore structure and fluid flow in porous media using 3D printing technology and LBM simulation, Journal of Groundwater Science and Engineering, 5, 254-265.
    [11] GUO Jiao, SHI Ying-chun, WU Li-jie, 2015: Gravity erosion and lithology in Pisha sandstone in southern Inner Mongolia, Journal of Groundwater Science and Engineering, 3, 45-58.
    [12] ZHANG Zhi-qiang, LI Hong-chao, WANG Yu-qing, ZHANG li-ye, WANG Ying, 2014: Application of Visual MODFLOW to simulation of migration in Cr6+ contaminated site, Journal of Groundwater Science and Engineering, 2, 28-35.
    [13] Liang ZHU, Wei-dong KANG, Ji-chao SUN, Jing-tao LIU, 2014: Quantitative Calculation of Groundwater Vulnerability Assessment Based on Quantification Theory III, Journal of Groundwater Science and Engineering, 2, 78-85.
    [14] Cui-ling Wang, Chang-li Liu, Ya-jie Pang, Li-xin Pei, Yun Zhang, 2013: Adsorption Behavior of Hexavalent Chromium in Vadose Zone, Journal of Groundwater Science and Engineering, 1, 83-88.
  • 加载中

Catalog

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (244) PDF downloads(58) Cited by()
    Proportional views
    Related

    JGSE-ScholarOne Manuscript Launched on June 1, 2024.

    Online Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return