• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ EBSCO Scopus GeoRef AJ CNKI
Advanced Search
Volume 12 Issue 4
Dec.  2024
Turn off MathJax
Article Contents
Rasheed S, Abraham M. 2024. Conventional and futuristic approaches for the computation of groundwater recharge: A comprehensive review. Journal of Groundwater Science and Engineering, 12(4): 428-452 doi:  10.26599/JGSE.2024.9280027
Citation: Rasheed S, Abraham M. 2024. Conventional and futuristic approaches for the computation of groundwater recharge: A comprehensive review. Journal of Groundwater Science and Engineering, 12(4): 428-452 doi:  10.26599/JGSE.2024.9280027

Conventional and futuristic approaches for the computation of groundwater recharge: A comprehensive review

doi: 10.26599/JGSE.2024.9280027
More Information
  • Corresponding author: shamlaafsal2000@gmail.com
  • Received Date: 2024-02-14
  • Accepted Date: 2024-08-20
  • Available Online: 2024-12-06
  • Publish Date: 2024-12-15
  • Groundwater recharge is a critical hydrologic component that determines groundwater availability and sustainability. Groundwater recharge estimation can be performed in a variety of ways, ranging from direct procedures to simulation models. The optimal strategy for recharge estimation depends on several factors, such as study objectives, climatic zones, hydrogeological conditions, data availability, methodology, and temporal and spatial constraints. Groundwater recharge is influenced by uncertainties in weather and hydrology. This study discusses conventional recharge estimation techniques and their application for optimal recharge calculation, and it also offers an overview of recent advances in recharge estimation methods. Most methods provide direct or indirect estimation of recharge across a small region on a point scale for a shorter time. With recent technological advancements and increased data availability, several advanced computational tools, including numerical, empirical, and artificial intelligence models, have been developed for efficient and reliable computation of groundwater recharge. This review article provides a thorough discussion of the techniques, assumptions, advantages, limitations, and selection procedures for estimating groundwater recharge.
  • 加载中
  • Abd-Elmaboud ME, Abdel-Gawad HA, El-Alfy KS, et al. 2021. Estimation of groundwater recharge using simulation-optimization model and cascade forward ANN at East Nile Delta aquifer, Egypt. Journal of Hydrology: Regional Studies, 34: 100784−100790. DOI: 10.1016/j.ejrh.2021.100784.
    Abraham M, Mohan S. 2019. Effectiveness of check dam and percolation pond with percolation wells for artificial groundwater recharge using groundwater models. Water Supply, 19(7): 2107−2115. DOI: 10.2166/ws.2019.091.
    Adomako D, Maloszewski P, Stumpp C, et al. 2010. Estimating groundwater recharge from water isotope (δ2H, δ18O) depth profiles in the Densu River Basin, Ghana. Hydrological Sciences Journal, 55(8): 1405−1416. DOI: 10.1080/02626667.2010.527847.
    Ahmadi A, Olyaei M, Heydari Z, et al. 2022. Groundwater level modeling with machine learning: A systematic review and meta-analysis. Water, 14(6): 949−955. DOI: 10.3390/w14060949.
    Ahmed AN, Yafouz A, Birima AH, et al. 2022. Water level prediction using various machine learning algorithms: A case study of Durian Tunggal River, Malaysia. Engineering Applications of Computational Fluid Mechanics, 16(1): 422−440. DOI: 10.1080/19942060.2021.2019128.
    Ali MH. 2017. Quantifying natural groundwater recharge using tracer and other techniques. Asian Journal of Environment & Ecology, 5(1): 1−12. DOI: 10.9734/AJEE/2017/36811.
    Ali MH, Mubarak S. 2017. Approaches and methods of quantifying natural groundwater recharge–a review. Asian Journal of Environment & Ecology, 5(1): 1−27. DOI: 10.9734/AJEE/2017/36987.
    Ali MH, Islam MA. 2020. Application of tracer method in determining groundwater recharge: A case study at Mymensingh Area, Bangladesh. Research and Development in Agricultural Sciences, 2: 106−116. DOI: 10.9734/bpi/rdas/v2.
    Allison GB, Hughes MW. 1983. The use of natural tracers as indicators of soil-water movement in a temperate semi-arid region. Journal of Hydrology, 60(1-4): 157−173. DOI: 10.1016/0022-1694(83)90019-7.
    Allison GB, Gee GW, Tyler SW. 1994. Vadose-zone techniques for estimating groundwater recharge in arid and semiarid regions. Soil Science Society of America Journal, 58(1): 6−14. DOI: 10.2136/sssaj1994.03615995005800010002x.
    Anh DT, Pandey M, Mishra VN, et al. 2023. Assessment of groundwater potential modeling using support vector machine optimization based on Bayesian multi-objective hyperparameter algorithm. Applied Soft Computing, 132: 109848. DOI: 10.1016/j.asoc.2022.109848.
    Asoka A, Wada Y, Fishman R, et al. 2018. Strong linkage between precipitation intensity and monsoon season groundwater recharge in India. Geophysical Research Letters, 45(11): 5536−5544. DOI: 10.1029/2018GL078466.
    Bak GM, Bae YC. 2019. Groundwater level prediction using ANFIS algorithm. The Journal of the Korea Institute of Electronic Communication Sciences, 14(6): 1235−1240. DOI: 10.13067/JKIECS.2019.14.6.1235.
    Banerjee D, Ganguly S, Kushwaha S. 2024. Forecasting future groundwater recharge from rainfall under different climate change scenarios using comparative analysis of deep learning and ensemble learning techniques. Water Resources Management, 1-19. DOI: 10.1007/s11269-024-03850-8.
    Batelaan O, De Smedt F. 2007. GIS-based recharge estimation by coupling surface–subsurface water balances. Journal of Hydrology, 337(3-4): 337−355. DOI: 10.1016/j.jhydrol.2007.02.001.
    Beyene TD, Zimale FA, Gebrekristos ST. 2024. A review on sources of uncertainties for groundwater recharge estimates: Insight into data scarce tropical, arid, and semiarid regions. Hydrology Research, 55(1): 51−66. DOI: 10.2166/nh.2023.221.
    Breiman L. 2001. Random forests. Machine learning, 45: 5−32. DOI: 10.1023/A:1010933404324.
    Brunner P, Simmons CT. 2012. Hydro Geosphere: A fully integrated, physically based hydrological model. Groundwater, 50(2): 170−176. DOI: 10.1111/j.1745-6584.2011.00882.x.
    Chapman T. 1999. A comparison of algorithms for stream flow recession and baseflow separation. Hydrological Processes, 13(5): 701−714. DOI: 10.1002/(SICI)1099-1085(19990415)13:5%3C701.
    Chaturvedi RS. 1973. A note on the investigation of groundwater resources in western districts of Uttar Pradesh, Annual Report. UP Irrigation Research Institute: 86–122.
    Chen ZY, Wan L, Nie ZL, et al. 2006. Identification of groundwater recharge in the Heihe Basin using environmental isotopes. Hydrogeology & Engineering Geology, 6: 9−14. DOI: 10.3969/j.issn.1000-3665.2006.06.003.
    Chen X, Zhang ZC, Zhang XN, et al. 2008. Estimation of groundwater recharge from precipitation and evapotranspiration by lysimeter measurement and soil moisture model. Journal of Hydrologic Engineering, 13(5): 333−340. DOI: 10.1061/(ASCE)1084-0699(2008)13:5(333).
    Chen X, Huang Y, Ling M, et al. 2012. Numerical modeling groundwater recharge and its implication in water cycles of two interdunal valleys in the Sand Hills of Nebraska. Physics and Chemistry of the Earth, Parts A/B/C, 53-54: 10–18. DOI: 10.1016/j.pce.2011.08.022.
    Cheng D, Wang W, Zhan H, et al. 2020. Quantification of transient specific yield considering unsaturated-saturated flow. Journal of hydrology, 580: 124043. DOI: 10.1016/j.jhydrol.2019.124043.
    Cook PG, Bohlke JK. 2000. Determining timescales for groundwater flow and solute transport. In: Cook PG, Herczeg AL. (eds) Environmental Tracers in Subsurface Hydrology. Springer, Boston, MA: 1–30. DOI: 10.1007/978-1-4615-4557-6_1.
    Cook PG, Solomon DK. 1995. Transport of atmospheric trace gases to the water table: Implications for groundwater dating with chlorofluorocarbons and krypton 85. Water Resources Research, 31(2): 263−270. DOI: 10.1029/94WR02232.
    Cooper JD, Gardner CM, Mackenzie N. 1990. Soil controls on recharge to aquifers. Journal of Soil Science, 41(4): 613−630. DOI: 10.1111/j.1365-2389.1990.tb00231.x.
    Coplen TB. 1993. Uses of environmental isotopes: Regional ground-water quality. van Nostrand Reinhold, 227-254.
    Dang XY, Zhang MS. 2008. Mode of occurrence of karst groundwater in the Northern Shaanxi Energy and Chemical Industry Base and its influence factors. Geological Bulletin of China, 27(08): 1138−1142.
    Daniel EB, Camp JV, LeBoeuf EJ, et al. 2011. Watershed modeling and its applications: A state-of-the-art review. The Open Hydrology Journal, 5: 26−50. DOI: 10.2174/1874378101105010026.
    De Vries JJ, Simmers I. 2002. Groundwater recharge: An overview of processes and challenges. Hydrogeology Journal, 10: 5−17. DOI: 10.1007/s10040-001-0171-7.
    Delin GN, Healy RW, Landon MK, et al. 2000. Effects of topography and soil properties on recharge at two sites in an agricultural Field 1. Journal of the American Water Resources Association, 36(6): 1401−1416. DOI: 10.1111/j.1752-1688.2000.tb05735.x.
    Dereje B, Nedaw D. 2019. Groundwater recharge estimation using WetSpass modeling in Upper Bilate Catchment, Southern Ethiopia. Momona Ethiopian Journal of Science, 11(1): 37−51. DOI: 10.4314/mejs.v11i1.3.
    Derbela M, Nouiri I. 2020. Intelligent approach to predict future groundwater level based on Artificial Neural Networks (ANN). Euro-Mediterranean Journal for Environmental Integration, 5: 51. DOI: 10.1007/s41207-020-00185-9.
    Di Salvo C. 2022. Improving results of existing groundwater numerical models using machine learning techniques: A review. Water, 14(15): 2307−2315. DOI: 10.3390/w14152307.
    Eckhardt K. 2008. A comparison of baseflow indices, which were calculated with seven different baseflow separation methods. Journal of Hydrology, 352(1): 168−173. DOI: 10.1016/j.jhydrol.2008.01.005.
    Edmunds WM, Gaye CB. 1994. Estimating the spatial variability of groundwater recharge in the Sahel using chloride. Journal of Hydrology, 156(1-4): 47−59. DOI: 10.1016/0022-1694(94)90070-1.
    Facchi A, Ortuani B, Maggi D, et al. 2004. Coupled SVAT–groundwater model for water resources simulation in irrigated alluvial plains. Environmental Modelling & Software, 19(11): 1053−1063. DOI: 10.1016/j.envsoft.2003.11.008.
    Fahim AKF, Kamal AM, Shahid S. 2024. Modeling spatial groundwater level patterns of Bangladesh using physio-climatic variables and machine learning algorithms. Groundwater for Sustainable Development, 25: 101142. DOI: 10.1016/j.gsd.2024.101142.
    Feddes RA, Kabat P, Van Bakel P, et al. 1988. Modelling soil water dynamics in the unsaturated zone—state of the art. Journal of Hydrology, 100(1-3): 69−111. DOI: 10.1016/0022-1694(88)90182-5.
    Feddes RA, Kowalik P, Kolinska MK, et al. 1976. Simulation of field water uptake by plants using a soil water dependent root extraction function. Journal of Hydrology, 31(1-2): 13−26. DOI: 10.1016/0022-1694(76)90017-2.
    Flint AL, Flint LE, Kwicklis EM, et al. 2002. Estimating recharge at Yucca Mountain, Nevada, USA: Comparison of methods. Hydrogeology Journal, 10: 180−204. DOI: 10.1007/s10040-001-0169-1.
    Gee GW, Hillel D. 1988. Groundwater recharge in arid regions: Review and critique of estimation methods. Hydrological processes, 2(3): 255−266. DOI: 10.1002/hyp.3360020306.
    Giudici M. 2023. Modeling water flow in variably saturated porous soils and alluvial sediments. Sustainability, 15(22): 15723−15730. DOI: 10.3390/su152215723.
    Gong C, Zhang Z, Wang W, et al. 2021. An assessment of different methods to determine specific yield for estimating groundwater recharge using lysimeters. Science of the Total Environment, 788: 147799. DOI: 10.1016/j.scitotenv.2021.147799.
    Gong C, Cook PG, Therrien R, et al. 2023. On groundwater recharge in variably saturated subsurface flow models. Water Resources Research, 59(9): DOI: 10.1029/2023WR034920.
    Healy RW, Cook PG. 2002. Using groundwater levels to estimate recharge. Hydrogeology Journal, 10(January): 91−109. DOI: 10.1007/s10040-001-0178-0.
    Healy RW. 2010. Estimating groundwater recharge, Cambridge University Press, Cambridge. DOI: 10.1017/CBO9780511780745.
    Hendrickx JMH. 1992. Groundwater recharge. A guide to understanding and estimating natural recharge (Volume 8, International Contributions to Hydrogeology). Journal of Environmental Quality, 21(3): 512–520. DOI: 10.2134/jeq1992.00472425002100030036x.
    Hsieh PA, Wingle WL, Healy RW. 2000. VS2DI-A graphical software package for simulating fluid flow and solute or energy transport in variably saturated porous media. Water-Resources Investigations Report. US Geological Survey. DOI: 10.3133/wri994130.
    Huang X, Gao L, Crosbie RS, et al. 2019. Groundwater recharge prediction using Linear Regression, multi-Layer perception network and deep learning. Water, 11(9): 1879−1897. DOI: 10.3390/w11091879.
    Huang X, Gao L, Zhang N, et al. 2023. A top-down deep learning model for predicting spatio-temporal dynamics of groundwater recharge. Environmental Modelling & Software, 167: 105778. DOI: 10.1016/j.envsoft.2023.105778.
    Hughes A, Mansour M, Ward R, et al. 2021. The impact of climate change on groundwater recharge: National-scale assessment for the British mainland. Journal of Hydrology, 598(July): 126336. DOI: 10.1016/j.jhydrol.2021.126336.
    Hussein EA, Thron C, Ghaziasgar M, et al. 2020. Groundwater prediction using machine-learning tools. Algorithms, 13(11): 300. DOI: 10.3390/a13110300.
    Jasechko S. 2019. Global isotope hydrogeology-review. Reviews of Geophysics, 57(3): 835−965. DOI: 10.1029/2018RG000627.
    Kemper KE. 2004. Groundwater from development to management. Hydrogeology Journal, 12(February): 3−5. DOI: 10.1007/s10040-003-0305-1.
    Kendy E, Gérard-Marchant P, Todd WM, et al. 2003. A soil-water-balance approach to quantify groundwater recharge from irrigated cropland in the North China Plain. Hydrological Processes, 17(10): 2011−2031. DOI: 10.1002/hyp.1240.
    Khalil M, Sakai M, Mizoguchi M, et al. 2003. Current and prospective applications of Zero Flux Plane (ZFP) method. Journal of the Japanese Society of Soil Physics, 95: 75−90. DOI: 10.34467/jssoilphysics.95.0_75.
    Kinzelbach W, Aeschbach W, Alberich C, et al. 2002. A survey of methods for analyzing groundwater recharge in arid and semi-arid regions (Vol. 2). Early Warning and Assessment Report Series, UNEP/DEWA/RS. 02-2. United Nations Environment Programme, Nairobi, ISBN 92-80702131-80702133.
    Kumar CP, Seethapathi PV. 2002. Assessment of natural groundwater recharge in Upper Ganga Canal command area. Journal of Applied Hydrology, 15(4): 13-20.
    Kumar CP. 2004. Groundwater flow models: An overview. In groundwater modelling and management. Ghosh NC, Sharma KD (Eds.), Capital Publishing Company: New Delhi: 153–178.
    Kumar CP. 2012. Climate change and its impact on groundwater resources. International Journal of Engineering and Science, 1(5): 43–60.
    Kuruppath N, Raviraj A, Kannan B, et al. 2018. Estimation of groundwater recharge using water table fluctuation method. International Journal of Current Microbiology and Applied Sciences, 7(10): 3404−3412. DOI: 10.20546/ijcmas.2018.710.395.
    Kurylyk BL, Irvine DJ, Carey SK, et al. 2017. Heat as a groundwater tracer in shallow and deep heterogeneous media: Analytical solution, spreadsheet tool, and field applications. Hydrological Processes, 31(4): 2648−2661. DOI: 10.1002/hyp.11216.
    Lapham W. 1989. Use of temperature profiles beneath streams to determine rates of vertical ground-water flow and vertical hydraulic conductivity. Technical Report NO.2337, Department of the Interior, US Geological Survey Open-File Report, USGPO: 5–44. DOI: 10.3133/wsp2337.
    Lee DR, Cherry JA. 1979. A field exercise on groundwater flow using seepage meters and mini-piezometers. Journal of Geological Education, 27(1): 6−10. DOI: 10.5408/0022-1368-27.1.6.
    Leibundgut C, Maloszewski P, Külls C, et al. 2009. Tracers in hydrology. John Wiley & Sons, Ltd. 5−12. DOI: 10.1002/9780470747148.
    Lerner DN. 1990. Groundwater recharge in urban areas. Atmospheric Environment. Part B. Urban Atmosphere, 24(1): 29−33. DOI: 10.1016/0957-1272(90)90006-G.
    Liaw A, Wiener M. 2002. Classification and regression by random Forest. R news, 2(3): 18−22. DOI: 10.32614/RJ-2002-028.
    McConville C, Kalin RM, Johnston H, et al. 2001. Evaluation of recharge in a small temperate catchment using natural and applied δ18O profiles in the unsaturated zone. Groundwater, 39(4): 616−623. DOI: 10.1111/j.1745-6584.2001.tb02349.x.
    McDonald MG, Harbaugh AW. 1988. A modular three-dimensional finite-difference ground-water flow model. Techniques of Water-Resources Investigations 06-A1. US Geological Survey. DOI: 10.3133/twri06A1.
    Mekonen SS, Boyce SE, Mohammed AK, et al. 2023. Recharge estimation approach in a Data-Scarce semi-arid region, Northern Ethiopian Rift Valley. Sustainability, 15(22): 15887. DOI: 10.3390/su152215887.
    Moeck C, Grech-Cumbo N, Podgorski J, et al. 2020. A global-scale dataset of direct natural groundwater recharge rates: A review of variables, processes and relationships. Science of the Total Environment, 717: 137042. DOI: 10.1016/j.scitotenv.2020.137042.
    Mogaji KA, Lim HS, Abdullah K. 2015. Modeling of groundwater recharge using a Multiple Linear Regression (MLR) recharge model developed from geophysical parameters: A case of groundwater resources management. Environmental Earth Sciences, 73(July): 1217−1230. DOI: 10.1007/s12665-014-3476-2.
    Mohan S, Abraham M. 2010. Derivations of simple site-specific recharge-precipitation relationships: A case study from the Cuddalore Basin, India. Environmental Geosciences, 17(1): 37−44. DOI: 10.1306/eg.07170909010.
    Mohan S, Pramada SK. 2023. Natural groundwater recharge estimation using multiple methods combined with an experimental study. Water Supply, 23(5): 1972−1986. DOI: 10.2166/ws.2023.090.
    Naghibi SA, Moghaddam DD, Kalantar B, et al. 2017. A comparative assessment of GIS-based data mining models and a novel ensemble model in groundwater well potential mapping. Journal of Hydrology, 548(May): 471−483. DOI: 10.1016/j.jhydrol.2017.03.020.
    Nathan RJ, McMahon TA. 1990. Evaluation of automated techniques for base flow and recession analyses. Water Resources Research, 26(7): 1465−1473. DOI: 10.1029/WR026i007p01465.
    Nativ R, Adar E, Dahan O, et al. 1995. Water recharge and solute transport through the vadose zone of fractured chalk under desert conditions. Water Resources Research, 31(2): 253−261. DOI: 10.1029/94WR02536.
    Nimmo JR, Healy RW, Stonestrom DA. 2005. Aquifer Recharge. Encyclopedia of Hydrological Science: Part 13, Groundwater, 4: 2229–2246. DOI: 10.1002/0470848944.hsa161a.
    Osman AI, Ahmed AN, Chow MF, et al. 2021. Extreme gradient boosting (Xgboost) model to predict the groundwater levels in Selangor Malaysia. Ain Shams Engineering Journal, 12(2): 1545−1556. DOI: 10.1016/j.asej.2020.11.011.
    Park E. 2012. Delineation of recharge rate from a hybrid water table fluctuation method. Water Resources Research, 48(7): 1−6. DOI: 10.1029/2011WR011696.
    Rajaee T, Ebrahimi H, Nourani V. 2019. A review of the artificial intelligence methods in groundwater level modeling. Journal of hydrology, 572(May): 336−351. DOI: 10.1016/j.jhydrol.2018.12.037.
    Reichstein M, Camps-Valls G, Stevens B, et al. 2019. Deep learning and process understanding for data-driven Earth system science. Nature, 566(7743): 195−204. DOI: 10.1038/s41586-019-0912-1.
    Reynolds D. 2009. Gaussian mixture models, Encyclopedia of Biometrics, Springer US, Boston, MA: 659–663. DOI: 10.1007/978-0-387-73003-5_196.
    Richards LA. 1931. Capillary conduction of liquids through porous mediums. Journal of Applied Physics, 1(5): 318−333. DOI: 10.1063/1.1745010.
    Rosenberry DO, Duque C, Lee DR. 2020. History, and evolution of seepage meters for quantifying flow between groundwater and surface water: Part 1 – Freshwater settings. Earth-Science Reviews, 204(May): 103167. DOI: 10.1016/j.earscirev.2020.103167.
    Ross PJ. 1990. SWIM: A simulation model for soil water infiltration and movement: Reference manual. CSIRO Division of Soils, Report No. 59.
    Sajil Kumar PJ, Schneider M, Elango L, et al. 2021. The State-of-the-Art estimation of groundwater recharge and water balance with a special emphasis on India: A critical review. Sustainability, 14(1): 340. DOI: 10.3390/su14010340.
    Sanford W. 2002. Recharge and groundwater models: An overview. Hydrogeology Journal, 10(1): 110−120. DOI: 10.1007/s10040-001-0173-5.
    Scanlon BR. 2000. Uncertainties in estimating water fluxes and residence times using environmental tracers in an arid unsaturated zone. Water Resources Research, 36(2): 395−409. DOI: 10.1029/1999WR900240.
    Scanlon BR, Healy RW, Cook PG. 2002. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal, 10(January): 18−39. DOI: 10.1007/s10040-001-0176-2.
    Sehgal SR. 1973. Ground water resources of Punjab State. Third Annual Research Session, Central Board of Irrigation and Power, New Delhi, India.
    Sena D, Nagwani NK. 2016. A time-series forecasting-based prediction model to estimate groundwater levels in India. Current Science, 111(6): 1083−1090. DOI: 10.18520/cs/v111/i6/1083-1090.
    Shamsi E, Ziaei AN, Naghedifar SM, et al. 2020. Groundwater recharge assessment of different irrigation scenarios by using unsaturated zone modeling (case study: Neishabour plain). Iranian Journal of Soil and Water Research, 51(2): 311−323. DOI: 10.22059/ijswr.2019.282466.668222.
    Sharafati A, Asadollah SB, Neshat A. 2020. A new artificial intelligence strategy for predicting the groundwater level over the Rafsanjan aquifer in Iran. Journal of Hydrology, 591(December): 125468. DOI: 10.1016/j.jhydrol.2020.125468.
    Shu Y, Wang HQ. 2005. The development of groundwater management models. Hydrogeology and Engineering Geology, 32 (6): 85-90. DOI: 10.3969/j.issn.1000-3665.2005.06.021.
    Sihag P, Angelaki A, Chaplot B. 2020. Estimation of the recharging rate of groundwater using random forest technique. Applied Water Science, 10(182): 1−11. DOI: 10.1007/s13201-020-01267-3.
    Simmers I. 1998. Groundwater recharge: An overview of estimation 'problems' and recent developments. Geological Society, London, Special Publications, 130: 107–115. DOI: 10.1144/GSL.SP.1998.130.01.10.
    Simunek J, Sejna M, Van Genuchten MT. 1998. The Hydrus-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media, Version 1.0, IGWMC - TPS - 70, International Ground Water Modeling Center, Colorado School of Mines, Golden, Colorado: 186.
    Simunek J, Van Genuchten MT, Sejna M. 2005. The HYDRUS software package for simulating one-, two-, and three-dimensional movement of water, heat, and multiple solutes in variably-saturated porous media, technical manual II, Hydrus 2D/3D. Version 5.0, PC Progress, Prague, Czech Republic: 283.
    Sophocleous M, Perkins SP. 2000. Methodology and application of combined watershed and ground-water models in Kansas. Journal of Hydrology, 236(3-4): 185−201. DOI: 10.1016/S0022-1694(00)00293-6.
    Sophocleous M. 2002. Interactions between groundwater and surface water: The state of the science. Hydrogeology Journal, 10(January): 52−67. DOI: 10.1007/s10040-001-0170-8.
    Sophocleous MA. 1991. Combining the soil-water balance and water-level fluctuation methods to estimate natural groundwater recharge: Practical aspects. Journal of Hydrology, 124(3-4): 229−241. DOI: 10.1016/0022-1694(91)90016-B.
    Stepanov S, Spiridonov D, Mai T. 2023. Prediction of numerical homogenization using deep learning for the Richards equation. Journal of Computational and Applied Mathematics, 424(May): 114980. DOI: 10.1016/j.cam.2022.114980.
    Stern MA, Flint LE, Flint AL et al. 2021. A Basin-scale approach to estimating recharge in the desert: Anza-Cahuilla groundwater Basin, CA. Journal of the American Water Resources Association, 57(6): 990–1003. DOI: 10.1111/1752-1688.12971.
    Stonestrom DA, Constantz J. 2003. Heat as a tool for studying the movement of groundwater near streams. Technical Report US Geological Survey Circular, 1260: 1−96. DOI: 10.3133/cir1260.
    Sun FQ, Yin LH, Jia WH, et al. 2020. Soil water movement and deep drainage through thick vadose ones on the northern slope of the Tianshan Mountain: Croplands vs natural lands. China Geology, 3(1): 113−123. DOI: 10.31035/cg2020008.
    Tao H, Hameed MM, Marhoon HA, et al. 2022. Groundwater level prediction using machine learning models: A comprehensive review. Neurocomputing, 489(June): 271−308. DOI: 10.1016/j.neucom.2022.03.014.
    Tladi TM, Ndambuki JM, Olwal TO, et al. 2023. Groundwater level trend analysis and prediction in the Upper Crocodile (West) Basin, South Africa. Water, 15(17): 3025. DOI: 10.3390/w15173025.
    Trefry MG, Muffels C. 2007. FEFLOW: A finite-element groundwater flow and transport modeling tool. Groundwater, 45(5): 525−528. DOI: 10.1111/j.1745-6584.2007.00358.x.
    Van Genuchten MT. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5): 892–898. DOI: 10.2136/sssaj1980.03615995004400050002x.
    Wang D, Tang Y. 2024. Analysis of groundwater level dynamic characteristics and influencing factors in Valley Plain of Lhasa City. Geological Bulletin of China, 43(6): 971−983. (in Chinese) DOI: 10.12097/gbc.2022.07.051.
    Wood WW, Sanford WE. 1995. Chemical and isotopic methods for quantifying ground-water recharge in a regional, semiarid environment. Groundwater, 33(3): 458−468. DOI: 10.1111/j.1745-6584.1995.tb00302.x.
    Yeh GT, Huang G, Cheng HP, et al. 2006. A first-principle, physics-based watershed model: WASH123D. Watershed models, 211: 244. DOI: 10.1201/9781420037432.ch9.
    Zeinali M, Azari A, Heidari MM. 2020. Simulating unsaturated zone of soil for estimating the recharge rate and flow exchange between a river and an aquifer. Water Resources Management, 34(1-2): 425−443. DOI: 10.1007/s11269-019-02458-7.
    Zeng J, Xie L, Liu ZQ. 2008. Type-2 Fuzzy Gaussian Mixture models. Pattern Recognition, 41(12): 3636−3643. DOI: 10.1016/j.patcog.2008.06.006.
    Zhang L, Walker GR, Fleming M. 2002. Surface water balance for recharge estimation-Part 9. Csiro Publishing. DOI: 10.1071/9780643105416.
    Zhang X, Wang N, Cao L, et al. 2024. Analysis of the contribution of rainfall to recharge in the Mu Us Desert (China) based on lysimeter data. Hydrogeology Journal, 32(1): 279−288. DOI: 10.1007/s10040-023-02750-2.
    Zhao W, Lin YZ, Zhou PP, et al. 2021. Characteristics of groundwater in Northeast Qinghai-Tibet Plateau and its response to climate change and human activities: A case study of Delingha, Qaidam Basin. China Geology, 4(3): 377−388. DOI: 10.31035/cg2021053.
    Zyvoloski G. 2007. FEHM: A control volume finite element code for simulating subsurface multi-phase multi-fluid heat and mass transfer. The subsurface flow and transport team at the Los Alamos National Laboratory (LANL). LAUR-07-3359.
  • 2305-7068/© Journal of Groundwater Science and Engineering Editorial Office. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)

  • Relative Articles

    [1] Jwan Sabah Mustafa, Dana Khider Mawlood, 2024: Developing three-dimensional groundwater flow modeling for the Erbil Basin using Groundwater Modeling System (GMS), Journal of Groundwater Science and Engineering, 12, 178-189.  doi: 10.26599/JGSE.2024.9280014
    [2] Jun Zhang, Rong-zhe Hou, Kun Yu, Jia-qiu Dong, Li-he Yin, 2024: Impact of water table on hierarchically nested groundwater flow system, Journal of Groundwater Science and Engineering, 12, 119-131.  doi: 10.26599/JGSE.2024.9280010
    [3] Zhe Wang, Li-juan Wang, Jian-mei Shen, Zhen-long Nie, Le Cao, Ling-qun Meng, 2024: Groundwater recharge via precipitation in the Badain Jaran Desert, China, Journal of Groundwater Science and Engineering, 12, 109-118.  doi: 10.26599/JGSE.2024.9280009
    [4] Yi-hang Gao, Jun-hui Shen, Lin Chen, Xiao Li, Shuang Jin, Zhen Ma, Qing-hua Meng, 2023: Influence of underground space development mode on the groundwater flow field in Xiong’an new area, Journal of Groundwater Science and Engineering, 11, 68-80.  doi: 10.26599/JGSE.2023.9280007
    [5] Rui-fang Meng, Hui-feng Yang, Xi-lin Bao, Bu-yun Xu, Hua Bai, Jin-cheng Li, Ze-xin Liang, 2023: Optimizing groundwater recharge plan in North China Plain to repair shallow groundwater depression zone, China, Journal of Groundwater Science and Engineering, 11, 133-145.  doi: 10.26599/JGSE.2023.9280012
    [6] Wondmagegn Taye Abebe, 2022: Evaluation of groundwater resource potential by using water balance model: A case of Upper Gilgel Gibe Watershed, Ethiopia, Journal of Groundwater Science and Engineering, 10, 209-222.  doi: 10.19637/j.cnki.2305-7068.2022.03.001
    [7] Chu Yu, Li-jie Wu, Yi-long Zhang, Xiu-ya Wang, Zhan-chuan Wang, Zhou Zhang, 2022: Effect of groundwater on the ecological water environment of typical inland lakes in the Inner Mongolian Plateau, Journal of Groundwater Science and Engineering, 10, 353-366.  doi: 10.19637/j.cnki.2305-7068.2022.04.004
    [8] Han Zhang, Zong-yu Chen, Chang-yuan Tang, 2021: Quantifying groundwater recharge and discharge for the middle reach of Heihe River of China using isotope mass balance method, Journal of Groundwater Science and Engineering, 9, 225-232.  doi: 10.19637/j.cnki.2305-7068.2021.03.005
    [9] Yacob T Tesfaldet, Avirut Puttiwongrak, Tanwa Arpornthip, 2020: Spatial and temporal variation of groundwater recharge in shallow aquifer in the Thepkasattri of Phuket, Thailand, Journal of Groundwater Science and Engineering, 8, 10-19.  doi: 10.19637/j.cnki.2305-7068.2020.01.002
    [10] SADIKI Moulay Lhassan, EL MANSOURI Bouabid, BENSEDDIK Badr, CHAO Jamal, KILI Malika, EL MEZOUARY Lhoussaine, 2019: Improvement of groundwater resources potential by artificial recharge technique: A case study of Charf El Akab aquifer in the Tangier region, Morocco, Journal of Groundwater Science and Engineering, 7, 224-236.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.003
    [11] LI Lu-lu, SU Chen, HAO Qi-chen, SHAO Jing-li, 2018: Numerical simulation of response of groundwater flow system in inland basin to density changes, Journal of Groundwater Science and Engineering, 6, 7-17.  doi: 10.19637/j.cnki.2305-7068.2018.01.002
    [12] SONG Chao, HAN Gui-lin, WANG Pan, SHI Ying-chun, HE Ze, 2017: Hydrochemical and isotope characteristics of spring water discharging from Qiushe Loess Section in Lingtai, northwestern China and their implication to groundwater recharge, Journal of Groundwater Science and Engineering, 5, 364-373.
    [13] NAN Tian, SHAO Jing-li, CUI Ya-li, 2016: Column test-based features analysis of clogging in artificial recharge of groundwater in Beijing, Journal of Groundwater Science and Engineering, 4, 88-95.
    [14] CHENG Tang-pei, LIU Xing-wei, SHAO Jing-Li, CUI Ya-li, 2016: Review of the algebraic linear methods and parallel implementation in numerical simulation of groundwater flow, Journal of Groundwater Science and Engineering, 4, 12-17.
    [15] WANG Shi-qin, SONG Xian-fang, WEI Shou-cai, SHAO Jing-li, 2016: Application of HYDRUS-1D in understanding soil water movement at two typical sites in the North China Plain, Journal of Groundwater Science and Engineering, 4, 1-11.
    [16] Xiu-yan WANG, Yu-hong FEI, 2014: Environmental Effect Caused by Over-exploitation of Deep Groundwater in North China, Journal of Groundwater Science and Engineering, 2, 12-20.
    [17] , 2014: The Experimental Investigations on Motion Features of Groundwater Flow near the Pumping Well, Journal of Groundwater Science and Engineering, 2, 1-11.
    [18] , 2013: Structural Control on Groundwater Distribution and Flow in the South of Ningxia Hui Autonomous Region, China, Journal of Groundwater Science and Engineering, 1, 1-8.
    [19] Wang Ping, Han Zhantao, Li Yasong, Chen Kang, Lv Xiaoli, Jian Ming, 2013: The Role of Groundwater Leakage through Deep Wells for the Deformation of Groundwater Flow: a Case Study in Cangzhou Area, Journal of Groundwater Science and Engineering, 1, 80-87.
    [20] Zong-jun Gao, Yong-gui Liu, 2013: Groundwater Flow Driven by Heat, Journal of Groundwater Science and Engineering, 1, 22-27.
  • 加载中

Catalog

    Tables(3)

    Article Metrics

    Article views (42) PDF downloads(9) Cited by()
    Proportional views
    Related

    JGSE-ScholarOne Manuscript Launched on June 1, 2024.

    Online Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return