• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ EBSCO ProQuest Scopus GeoRef AJ CNKI
Advanced Search
Volume 13 Issue 3
Jun.  2025
Turn off MathJax
Article Contents
Ran B, Zhang WY, Zhang ZY, et al. 2025. Mechanisms of irrigation water recharge in the Kongque River Irrigation District of Xinjiang, China. Journal of Groundwater Science and Engineering, 13(3): 225-236 doi:  10.26599/JGSE.2025.9280051
Citation: Ran B, Zhang WY, Zhang ZY, et al. 2025. Mechanisms of irrigation water recharge in the Kongque River Irrigation District of Xinjiang, China. Journal of Groundwater Science and Engineering, 13(3): 225-236 doi:  10.26599/JGSE.2025.9280051

Mechanisms of irrigation water recharge in the Kongque River Irrigation District of Xinjiang, China

doi: 10.26599/JGSE.2025.9280051
More Information
  • Corresponding author: zaiyongzhang@126.com
  • Received Date: 2024-10-10
  • Accepted Date: 2025-03-15
  • Available Online: 2025-08-08
  • Publish Date: 2025-06-30
  • Understanding the infiltration process and quantifying recharge are critical for effective water resources management, particularly in arid and semi-arid regions. However, factors influencing on recharge process under different land use types in irrigation districts remain unclear. In this study, a Brilliant Blue FCF dye tracer experiment was conducted to investigate infiltration pathways under the cotton field, pear orchard, and bare land conditions in the Kongque Rive Irrigation District of Xinjiang, China. Recharge rates were estimated using the chloride mass balance method. The results show that the average preferential flow ratio was highest in the bare land (50.42%), followed by the cotton field (30.09%) and pear orchard (23.59%). Matrix flow was the dominant infiltration pathway in the pear orchard and cotton field. Irrigation method was a primary factor influencing recharge rates, with surface irrigation promoting deeper infiltration compared to drip irrigation. Under the drip irrigation mode, the recharge of cotton fields ranged from 23.47 mm/a to 59.16 mm/a. In comparison, the recharge of surface irrigation in pear orchards contributed between 154.30 mm/a and 401.65 mm/a. These findings provide valuable insights into soil water infiltration and recharge processes under typical land use conditions in the Kongque River Irrigation District, supporting improved irrigation management and sustainable water resource utilization.
  • 加载中
  • Chen C, Xin Z, Ashutosh Kumar S, et al. 2022. Effects of grazing exclusion on soil infiltrability and preferential flow in savannah livestock grazing systems. Land Degradation & Development, 33(16). DOI: 10.1002/ldr.4368
    Chu L, Huang R, Zhao Y, et al. 2023. Characteristics of preferential flow dyeing morphology in the field-ridge transition zone of different land use types in low mountainous and hilly areas. Transactions of the Chinese Society of Agricultural Engineering, 39(04): 115−123. (in Chinese). DOI: 10.11975/j.issn.1002-6819.202209171.
    Cook P, Brunner P. 2025. Quantification of Groundwater Recharge. The Groundwater Project, Canada. DOI: 10.62592/BAUS7081
    Cook PG, Jolly ID, Leaney FW, et al. 1994. Unsaturated zone tritium and chlorine 36 profiles from southern Australia: Their use as tracers of soil water movement. Water Resources Research, 30(6): 1709−1719. DOI: 10.1029/94WR00161.
    Du J. 2009. Coupled modeling and controlling of water and salt transportin the unsaturated-saturated zone in an arid salinization region-A case study in Yanqi Basin of Xinjiang, China. China University of Geosciences (in Chinese).
    Gong C, Cook PG, Therrien R, et al. 2023. On groundwater recharge in variably saturated subsurface flow models. Water Resources Research, 59(9): e2023WR034920. DOI: 10.1029/2023WR034920.
    Gong C, Zhang Z, Wang W, et al. 2021. An assessment of different methods to determine specific yield for estimating groundwater recharge using lysimeters. Science of The Total Environment, 788: 147799. DOI: 10.1016/j.scitotenv.2021.147799.
    Guan N, Cheng JH, Hou F, et al. 2023. Characteristics and influencing factors of soil preferential flow in typical stands of Karst area in southwest China. Chinese Journal of Applied Ecology, 34(1): 31−38. (in Chinese). DOI: 10.13287/j.1001-9332.202301.020.
    Hou F, Cheng J, Guan N. 2023. Investigating the effect of soil cracks on preferential flow using a dye tracing infiltration experiment in karst in Southwest China. Land Degradation and Development, 34(6): 1612−1628. DOI: 10.1002/ldr.4557.
    Lv G, Jin Z, Ling S, et al. 2019. Characteristics of soil preferential flow in water conservation forest at Hunhe River Source. Journal of Soil and Water Conservation, 33(04): 287−292. (In Chinese). DOI: 10.13870/j.cnki.stbcxb.2019.04.040.
    Porhemmat J, Nakhaei M, Altafi Dadgar M, et al. 2018. Investigating the effects of irrigation methods on potential groundwater recharge: A case study of semiarid regions in Iran. Journal of Hydrology, 565: 455−466. DOI: 10.1016/j.jhydrol.2018.08.036.
    Qiu D, Xu R, Wu C, et al. 2023. Effects of vegetation restoration on soil infiltrability and preferential flow in hilly gully areas of the Loess Plateau, China. Catena, 221: 106770. DOI: 10.1016/j.catena.2022.106770.
    Scanlon BR, Healy RW, Cook PG. 2002. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal, 10(1): 18−39. DOI: 10.1007/s10040-001-0176-2.
    Van Schaik NLMB. 2009. Spatial variability of infiltration patterns related to site characteristics in a semi-arid watershed. Catena, 78(1): 36−47. DOI: 10.1016/j.catena.2009.02.017.
    Wang W, Gong C, Zhang Z, et al. 2018. Research status and prospect of the subsurface hydrology and ecological effect in arid regions. Advances in Earth Science, 33(07): 702−718. (in Chinese). DOI: 10.11867/j.issn.1001-8166.2018.07.0702.
    Yuan R, Long X, Wang P, et al. 2015. Discussion on application of Chloride Mass Balance method. Journal of China Hydrology, 35(04): 7−13; 26 (in Chinese). DOI: 10.3969/j.issn.1000-0852.2015.04.002.
    Zhang J, Yin L, Gu X, et al. 2021a. Study on the relationship between groundwater and surface water in Xinjiang Kongque Rver Basin using isotopes and hydrochemistry method. Northwestern Geology, 54(01): 185−195. (in Chinese). DOI: 10.19751/j.cnki.61-1149/p.2021.01.016.
    Zhang Z, Wang W, Gong C, et al. 2021b. Effects of non-isothermal flow on groundwater recharge in a semi-arid region. Hydrogeology Journal, 29(2): 541−549. DOI: 10.1007/s10040-020-02217-8.
    Zhang P. 2015. Study on the water and salt transportation in theunsaturated zone and the influence on groundwater qualityin irrigated land of Kongque River alluvial-proluvial fan. Jilin University (in Chinese)
    Zhang X, Chen J, Zhan L, et al. 2023. Study on groundwater recharge based on chloride mass balance and hydrochemistry in the irrigated agricultural area, North China Plain. Environmental Earth Sciences, 82(3): 70. DOI: 10.1007/s12665-022-10682-5.
    Zhang Z, Wang W, Gong C, et al. 2021c. Salix psammophila afforestations can cause a decline of the water table, prevent groundwater recharge and reduce effective infiltration. Science of the Total Environment, 780: 146336. DOI: 10.1016/j.scitotenv.2021.146336.
    Zheng X, Cheng J, Zhang H, et al. 2018. Characteristics and influencing factors of preferential flow dyeing morphology of two soils in Beijing. Journal of Soil and Water Conservation, 32(03): 113−119; 131. (in Chinese). DOI: 10.13870/j.cnki.stbcxb.2018.03.018.
    Zhong S, Li C, Qiao P. 2025. Vegetation abrupt changes and attribution in the arid and semi-arid regions of Northwest China under aridity gradients from 2000 to 2020. Journal of Desert Research, 45(02): 275−283. (in Chinese). DOI: 10.7522/j.issn.1000-694X.2025.00015.
    Zhou H, Li B, Lu X, et al. 2010. Multifractal characteristics of soil pore structure under different tillage systems. Acta Pedologica Sinica, 47(06): 1094−1100. (in Chinese). DOI: 10.11766/trxb200906190269.
  • 2305-7068/© Journal of Groundwater Science and Engineering Editorial Office. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)

  • Relative Articles

    [1] Mojtaba Hassanpour, Hossein Khozeymehnezhad, Abalfazl Akbarpour, 2025: Presenting and evaluating a new empirical relationship for estimating the rate of infiltration in trenches, Journal of Groundwater Science and Engineering, 13, 101-115.  doi: 10.26599/JGSE.2025.9280042
    [2] Mobin Eftekhari, Abbas Khashei-Siuki, 2025: Evaluating machine learning methods for predicting groundwater fluctuations using GRACE satellite in arid and semi-arid regions, Journal of Groundwater Science and Engineering, 13, 5-21.  doi: 10.26599/JGSE.2025.9280035
    [3] Ali Al-Maktoumi, 2025: A review of factors affecting the performance and impact of managed aquifer recharge projects: Insights from arid regions, Journal of Groundwater Science and Engineering, 13, 312-340.  doi: 10.26599/JGSE.2025.9280057
    [4] Shamla Rasheed, Marykutty Abraham, 2024: Conventional and futuristic approaches for the computation of groundwater recharge: A comprehensive review, Journal of Groundwater Science and Engineering, 12, 428-452.  doi: 10.26599/JGSE.2024.9280027
    [5] Zhe Wang, Li-juan Wang, Jian-mei Shen, Zhen-long Nie, Le Cao, Ling-qun Meng, 2024: Groundwater recharge via precipitation in the Badain Jaran Desert, China, Journal of Groundwater Science and Engineering, 12, 109-118.  doi: 10.26599/JGSE.2024.9280009
    [6] Fatemeh Einlo, Mohammad Reza Ekhtesasi, Mehdi Ghorbani, Parviz Abdinejad, 2023: Determine the most appropriate strategy for groundwater management in arid and semi-arid regions, Abhar Plain, Iran, Journal of Groundwater Science and Engineering, 11, 97-115.  doi: 10.26599/JGSE.2023.9280010
    [7] Qiang Liu, Xiao-dong Guo, Chang-qi Wang, Nan Lin, Hui-rong Zhang, Lin Chen, Yan Zhang, 2023: Changes in groundwater resources and their influencing factors in Songnen Plain, China, Journal of Groundwater Science and Engineering, 11, 207-220.  doi: 10.26599/JGSE.2023.9280018
    [8] Jin-xing Guo, Zhi-ping Li, Catalin Stefan, 2022: Managed aquifer recharge (MAR) applications in China–achievements and challenges, Journal of Groundwater Science and Engineering, 10, 57-69.  doi: 10.19637/j.cnki.2305-7068.2022.01.006
    [9] Shima Nasiri, Hossein Ansari, Ali Naghi Ziaei, 2022: Determination of water balance equation components in irrigated agricultural watersheds using SWAT and MODFLOW models : A case study of Samalqan plain in Iran, Journal of Groundwater Science and Engineering, 10, 44-56.  doi: 10.19637/j.cnki.2305-7068.2022.01.005
    [10] Wondmagegn Taye Abebe, 2022: Evaluation of groundwater resource potential by using water balance model: A case of Upper Gilgel Gibe Watershed, Ethiopia, Journal of Groundwater Science and Engineering, 10, 209-222.  doi: 10.19637/j.cnki.2305-7068.2022.03.001
    [11] Vinay Kumar Gautam, Mahesh Kothari, P.K. Singh, S.R. Bhakar, K.K. Yadav, 2022: Analysis of groundwater level trend in Jakham River Basin of Southern Rajasthan, Journal of Groundwater Science and Engineering, 10, 1-9.  doi: 10.19637/j.cnki.2305-7068.2022.01.001
    [12] M Shahbaz Akhtar, Yoshitaka Nakashima, Makoto Nishigaki, 2021: Clogging mechanisms and preventive measures in artificial recharge systems, Journal of Groundwater Science and Engineering, 9, 181-201.  doi: 10.19637/j.cnki.2305-7068.2021.03.002
    [13] Han Zhang, Zong-yu Chen, Chang-yuan Tang, 2021: Quantifying groundwater recharge and discharge for the middle reach of Heihe River of China using isotope mass balance method, Journal of Groundwater Science and Engineering, 9, 225-232.  doi: 10.19637/j.cnki.2305-7068.2021.03.005
    [14] Jhim Terrazas-Salvatierra, Galo Munoz-Vásquez, Ana Romero-Jaldin, 2020: Migration of total chromium and chloride anion in the Rocha River used for estimating degradation of agricultural soil quality at the Thiu Rancho zone, Journal of Groundwater Science and Engineering, 8, 223-229.  doi: 10.19637/j.cnki.2305-7068.2020.03.003
    [15] Yacob T Tesfaldet, Avirut Puttiwongrak, Tanwa Arpornthip, 2020: Spatial and temporal variation of groundwater recharge in shallow aquifer in the Thepkasattri of Phuket, Thailand, Journal of Groundwater Science and Engineering, 8, 10-19.  doi: 10.19637/j.cnki.2305-7068.2020.01.002
    [16] A Muthamilselvan, N Rajasekaran, R Suresh, 2019: Mapping of hard rock aquifer system and artificial recharge zonation through remote sensing and GIS approach in parts of Perambalur District of Tamil Nadu, India, Journal of Groundwater Science and Engineering, 7, 264-281.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.007
    [17] SONG Chao, HAN Gui-lin, WANG Pan, SHI Ying-chun, HE Ze, 2017: Hydrochemical and isotope characteristics of spring water discharging from Qiushe Loess Section in Lingtai, northwestern China and their implication to groundwater recharge, Journal of Groundwater Science and Engineering, 5, 364-373.
    [18] NAN Tian, SHAO Jing-li, CUI Ya-li, 2016: Column test-based features analysis of clogging in artificial recharge of groundwater in Beijing, Journal of Groundwater Science and Engineering, 4, 88-95.
    [19] HUANG Xiao-qin, YU Yan-qing, SUN Yong-liang, 2014: Construction of ecological environment of oasis in Qingtongxia Irrigation District, Journal of Groundwater Science and Engineering, 2, 78-84.
    [20] Jingli Shao, Yali Cui, Yunzhang Zhao, 2013: A Study on Infiltration and Groundwater Development in the Influent Zone of the Perched Lower Yellow River, Journal of Groundwater Science and Engineering, 1, 46-53.
  • 加载中

Catalog

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (19) PDF downloads(1) Cited by()
    Proportional views
    Related

    JGSE-ScholarOne Manuscript Launched on June 1, 2024.

    Online Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return