• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ EBSCO ProQuest Scopus GeoRef AJ CNKI
Advanced Search
Volume 13 Issue 3
Jun.  2025
Turn off MathJax
Article Contents
Armanuos Asaad M., Selmy M, Omara H, et al. 2025. Web-based tool for analyzing the seawater-freshwater interface using analytical solutions and SEAWAT code comparison. Journal of Groundwater Science and Engineering, 13(3): 250-267 doi:  10.26599/JGSE.2025.9280053
Citation: Armanuos Asaad M., Selmy M, Omara H, et al. 2025. Web-based tool for analyzing the seawater-freshwater interface using analytical solutions and SEAWAT code comparison. Journal of Groundwater Science and Engineering, 13(3): 250-267 doi:  10.26599/JGSE.2025.9280053

Web-based tool for analyzing the seawater-freshwater interface using analytical solutions and SEAWAT code comparison

doi: 10.26599/JGSE.2025.9280053
More Information
  • Corresponding author: sobhy_emara39@f-eng.tanta.edu.eg
  • Received Date: 2024-07-12
  • Accepted Date: 2025-03-30
  • Available Online: 2025-06-27
  • Publish Date: 2025-06-30
  • Saltwater Intrusion (SI) poses a significant environmental threat to freshwater resources in coastal aquifers globally. The primary objective of this research is to illustrate the variations in the saltwater-freshwater interface using several established analytical solutions, integrated within a user-friendly web-based tool. Three case studies, including a hypothetical unconfined coastal aquifer, an experimental coastal aquifer, and a real-world coastal aquifer in Gaza, were applied to examine the interface dynamics using the developed tool, built with JavaScript. To simulate variable-density flow within the Gaza coastal aquifer, the public domain code SEAWAT was employed. The resulting lengths of seawater intrusion, as simulated by SEAWAT and the observed toe length, were compared with those obtained from the web-based analytical solutions under both constant head and constant flux boundary conditions. This comparison demonstrated a strong correlation between the experimental results, SEAWAT model outputs, and analytical solutions. This research provides valuable insights into SI in coastal aquifers, with a specific focus on the impact of Sea Level Rise (SLR) on the shifting position of the seawater intrusion toe. The outcomes are presented through an accessible web-based interface, thereby promoting broader dissemination and practical application of the research outcomes.
  • 加载中
  • Abd-Elaty I, Zelenakova M. 2022. Saltwater intrusion management in shallow and deep coastal aquifers for high aridity regions. Journal of Hydrology: Regional Studies, 40: 101026. DOI: 10.1016/j.ejrh.2022.101026.
    Abdoulhalik A, Ahmed AA. 2017. The effectiveness of cutoff walls to control saltwater intrusion in multi-layered coastal aquifers: Experimental and numerical study. Journal of Environmental Management, 199: 62−73. DOI: 10.1016/j.jenvman.2017.05.040.
    Abualtayef M, Rahman GA, Snounu I, et al. 2017. Evaluation of the effect of water management interventions on water level of Gaza coastal aquifer. Arabian Journal of Geosciences, 10: 1−19. DOI: 10.1007/s12517-017-3329-x.
    Anderson EI. 2021. Analytical solutions for confined and unconfined coastal interface flow by the Hodograph method. Water Resources Research, 57(9). DOI: 10.1029/2021WR030323.
    Armanuos AM. 2017. Experimental and numerical study of saltwater intrusion in the Nile delta aquifer, Egypt [PhD Thesis]. Egypt-Japan University of Science and Technology (E-JUST).
    Armanuos AM, Al-Ansari N, Yaseen ZM. 2020a. Assessing the effectiveness of using recharge wells for controlling the saltwater intrusion in unconfined coastal aquifers with sloping beds: Numerical Study. Sustainability, 12(7): 2685. DOI: 10.3390/su12072685.
    Armanuos AM, Al-Ansari N, Yaseen ZM. 2020b. Underground barrier wall evaluation for controlling saltwater intrusion in sloping unconfined coastal aquifers. Water, 12(9): 2403. DOI: 10.3390/w12092403.
    Ataie-Ashtiani B, Werner AD, Simmons CT, et al. 2013. How important is the impact of land-surface inundation on seawater intrusion caused by sea-level rise? Hydrogeology Journal, 21(7): 1673.
    Chang SW, Clement TP, Simpson MJ, et al. 2011. Does sea-level rise have an impact on saltwater intrusion? Advances in Water Resources, 34(10): 1283–1291. DOI: 10.1016/j.advwatres.2011.06.006.
    Dang NM, Vien LN, Tung NB, et al. 2020. Assessments of climate change and sea level rise impacts on flows and saltwater intrusion in the Vu Gia—Thu Bon River Basin, Vietnam. APAC. Springer Singapore: 1367–1374. DOI:  10.1007/978-981-15-0291-0_185
    Emara SR, Armanuos AM, Gado TA, et al. 2023a. Verification of experimental saltwater intrusion interface in unconfined coastal aquifers using numerical and analytical solutions. Acque Sotterranee - Italian Journal of Groundwater, 12(3): 23−38. DOI: 10.7343/as-2023-668.
    Emara SR, Armanuos AM, Shalby A. 2024a. Appraisal seawater intrusion vulnerability for the Moghra coastal aquifer, Egypt– application of the GALDIT index, sensitivity analysis, and hydro-chemical indicators. Groundwater for Sustainable Development, 25: 101166. DOI: 10.1016/j.gsd.2024.101166.
    Emara SR, Armanuos AM, Zeidan BA, et al. 2024b. Numerical investigation of mixed physical barriers for saltwater removal in coastal heterogeneous aquifers. Environmental Science and Pollution Research, 31(3): 4826−4847. DOI: 10.1007/s11356-023-31454-z.
    Emara SR, Gado TA, Zeidan BA, et al. 2023b. Evaluating the impact of inclined cutoff-wall to control seawater intrusion in heterogeneous coastal aquifers. Water Resources Management, 37(15): 6021−6050. DOI: 10.1007/s11269-023-03641-7.
    Fan Y, Lu W, Miao T, et al. 2020. Multiobjective optimization of the groundwater exploitation layout in coastal areas based on multiple surrogate models. Environmental Science and Pollution Research, 27(16): 19561−19576. DOI: 10.1007/s11356-020-08367-2.
    Ghyben BW. 1888. Nota in verband met de voorgenomen putboring nabij, Amsterdam. The Hague, 21.
    Glover RE. 1959. The pattern of fresh-water flow in a coastal aquifer. Journal of Geophysical Research, 64(4): 457−459. DOI: 10.1029/JZ064i004p00457.
    Goswami RR, Clement TP. 2007. Laboratory-scale investigation of saltwater intrusion dynamics. Water Resources Research, 43. DOI: 10.1029/2006WR005151.
    Guo W, Langevin CD. 2002. User's guide to SEAWAT; a computer program for simulation of three-dimensional variable-density ground-water flow (USGS Numbered Series No. 06-A7), User's guide to SEAWAT; a computer program for simulation of three-dimensional variable-density ground-water flow, Techniques of Water-Resources Investigations. DOI: 10.3133/twri06A7.
    Heen ZHA, Muhsen S. 2016. Application of vertical electrical sounding for delineation of sea water intrusion into the freshwater aquifer of southern governorates of Gaza Strip, Palestine. IUG Journal of Natural Studies, 24(2).
    Herzberg A. 1901. Die wasserversorgung einiger Nordseebader. Journal für Gasbeleuchtung und Wasserversorgung, 44: 842−844.
    Javadi A, Hussain M, Sherif M, et al. 2015. Multi-objective optimization of different management scenarios to control seawater intrusion in coastal aquifers. Water Resources Management, 29(6): 1843−1857. DOI: 10.1007/s11269-015-0914-1.
    Kaleris VK, Ziogas AI. 2013. The effect of cutoff walls on saltwater intrusion and groundwater extraction in coastal aquifers. Journal of Hydrology, 476: 370−383. DOI: 10.1016/j.jhydrol.2012.11.007.
    Koussis AD, Mazi K, Destouni G. 2012. Analytical single-potential, sharp-interface solutions for regional seawater intrusion in sloping unconfined coastal aquifers, with pumping and recharge. Journal of Hydrology, 416–417: 1–11. DOI: 10.1016/j.jhydrol.2011.11.012.
    Kuan WK, Jin G, Xin P, et al. 2012. Tidal influence on seawater intrusion in unconfined coastal aquifers. Water Resources Research, 48(2): 136−149. DOI: 10.1029/2011WR010678.
    Li Y, Wen MZ, Yu H, et al. 2024. Changes of coastline and tidal flat and its implication for ecological protection under human activities: Take China’s Bohai Bay as an example. China Geology, 7(1): 26−35. DOI: 10.31035/cg2023007.
    Lu C, Xin P, Li L, et al. 2015. Seawater intrusion in response to sea-level rise in a coastal aquifer with a general-head inland boundary. Journal of Hydrology, 522: 135−140.
    Lu C, Xin P, Kong J, et al. 2016. Analytical solutions of seawater intrusion in sloping confined and unconfined coastal aquifers. Water Resources Research, 52(9): 6989−7004. DOI: 10.1002/2016WR019101.
    Luo Z, Kong J, Shen C, et al. 2022. Approximate analytical solutions for assessing the effects of unsaturated flow on seawater extent in thin unconfined coastal aquifers. Advances in Water Resources, 160: 104104. DOI: 10.1016/j.advwatres.2021.104104.
    Mehdizadeh SS, Badaruddin S, Khatibi S. 2019. Abstraction, desalination and recharge method to control seawater intrusion into unconfined coastal aquifers. Global Journal of Environmental Science and Management, 5(1): 107−118. DOI: 10.22034/gjesm.2019.01.09.
    Motallebian M, Ahmadi H, Raoof A, et al. 2019. An alternative approach to control saltwater intrusion in coastal aquifers using a freshwater surface recharge canal. Journal of Contaminant Hydrology, 222: 56−64. DOI: 10.1016/j.jconhyd.2019.02.007.
    Qahman K. 2004. Aspects of hydrogeology, modeling, and management of seawater intrusion for Gaza aquifer–palestine. PhD. theis, LIMEN, Ecole Mohammadia D 'Ingenieurs, Université Mohammed V-Morocco.
    Ranjbar A, Mahjouri N, Cherubini C. 2020. Development of an efficient conjunctive meta-model-based decision-making framework for saltwater intrusion management in coastal aquifers. Journal of Hydro-Environment Research, 29: 45−58. DOI: 10.1016/j.jher.2019.11.005.
    Rumer Jr RR, Harleman DR. 1963. Intruded salt-water wedge in porous media. Journal of the Hydraulics Division, 89(6): 193−220. DOI: 10.1061/JYCEAJ.0000954.
    Sherif M, Sefelnasr A, Ebraheem AA, et al. 2014. Quantitative and qualitative assessment of seawater intrusion in Wadi Ham under different pumping scenarios. Journal of Hydrologic Engineering, 19(5): 855−866. DOI: 10.1061/(ASCE)HE.1943-5584.0000907.
    Sirhan H, Koch M. 2013. Numerical modeling of the effects of artificial recharge on hydraulic heads in constant-density ground water flow to manage the Gaza coastal aquifer, South Palestine. 6th International Conference on Water Resources and Environment Research, ICWRER: 3−7.
    Sun Q, Zheng T, Zheng X, et al. 2021. Effects of subsurface barriers on seawater intrusion and nitrate accumulation in coastal aquifers. Authorea Preprints. DOI: 10.22541/au.161252403.31172601.
    Verruijt A. 1968. A note on the Ghyben-Herzberg formula. Hydrological Sciences Journal, 13(4): 43−46.
    Wang XJ, Guo YF, Yu SC, et al. 2025. Nutrient dynamics and discharge in a coastal sandy beach aquifer. Hydrogeology & Engineering Geology, 52(1): 12−22. DOI: 10.16030/j.cnki.issn.1000-3665.202409063.
    Werner AD, Bakker M, Post VEA, et al. 2013. Seawater intrusion processes, investigation and management: Recent advances and future challenges. Advances in Water Resources, 51: 3−26. DOI: 10.1016/j.advwatres.2012.03.004.
  • 2305-7068/© Journal of Groundwater Science and Engineering Editorial Office. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)

  • Relative Articles

    [1] Zhe Wang, Li-juan Wang, Jian-mei Shen, Zhen-long Nie, Le Cao, Ling-qun Meng, 2024: Groundwater recharge via precipitation in the Badain Jaran Desert, China, Journal of Groundwater Science and Engineering, 12, 109-118.  doi: 10.26599/JGSE.2024.9280009
    [2] Mouna Djellali, Omar Guefaïfia, Chemsedinne Fehdi, Adel Djellali, Amor Hamad, 2023: Assessing the impact of artificial recharge on groundwater in an over-exploited aquifer: A case study in the Cheria Basin, North-East of Algeria, Journal of Groundwater Science and Engineering, 11, 263-277.  doi: 10.26599/JGSE.2023.9280022
    [3] Yu-kun Sun, Feng Liu, Hua-jun Wang, Xin-zhi Gao, 2022: Numerical simulation of operation performance on production and injection of a double well geothermal system in Kailu Basin, Inner Mongolia, Journal of Groundwater Science and Engineering, 10, 196-208.  doi: 10.19637/j.cnki.2305-7068.2022.02.008
    [4] Xin Ma, Dong-guang Wen, Guo-dong Yang, Xu-feng Li, Yu-jie Diao, Hai-hai Dong, Wei Cao, Shu-guo Yin, Yan-mei Zhang, 2021: Potential assessment of CO2 geological storage based on injection scenario simulation: A case study in eastern Junggar Basin, Journal of Groundwater Science and Engineering, 9, 279-291.  doi: 10.19637/j.cnki.2305-7068.2021.04.002
    [5] Chun-chao ZHANG, Xin-wei HOU, Xiang-quan LI, Zhen-xing WANG, Chun-lei GUI, Xue-feng ZUO, Jian-fei MA, Ming GAO, 2020: Numerical simulation and environmental impact prediction of karst groundwater in Sangu Spring Basin, China, Journal of Groundwater Science and Engineering, 8, 210-222.  doi: 10.19637/j.cnki.2305-7068.2020.03.002
    [6] Feng LIU, Gui-ling WANG, Wei ZHANG, Chen YUE, Li-bo TAO, 2020: Using TOUGH2 numerical simulation to analyse the geothermal formation in Guide basin, China, Journal of Groundwater Science and Engineering, 8, 328-337.  doi: 10.19637/j.cnki.2305-7068.2020.04.003
    [7] LI Wen-yon, FU Li, ZHU Zheng-feng, 2019: Numerical simulation and land subsidence control for deep foundation pit dewatering of Longyang Road Station on Shanghai Metro Line 18, Journal of Groundwater Science and Engineering, 7, 133-144.  doi: 10.19637/j.cnki.2305-7068.2019.02.004
    [8] MENG Yong-hui, WANG Ji-ning, YU De-Jie, ZHANG Li-xia, FENG Zai-min, YAN Tang, ZHOU Yong, 2019: Effect of saltwater intrusion on groundwater environment in Weihe River downstream, Shandong Province, China, Journal of Groundwater Science and Engineering, 7, 245-252.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.005
    [9] WANG Shu-fang, LIU Jiu-rong, SUN Ying, LIU Shi-liang, GAO Xiao-rong, SUN Cai-xia, LI Hai-kui, 2018: Study on the geothermal production and reinjection mode in Xiong County, Journal of Groundwater Science and Engineering, 6, 178-186.  doi: 10.19637/j.cnki.2305-7068.2018.03.003
    [10] ZHAN Jiang, LI Wu-jin, LI Zhi-ping, ZHAO Gui-zhang, 2018: Indoor experiment and numerical simulation study of ammonia-nitrogen migration rules in soil column, Journal of Groundwater Science and Engineering, 6, 205-219.  doi: 10.19637/j.cnki.2305-7068.2018.03.006
    [11] ZHANG Chun-chao, LI Xiang-quan, GAO Ming, HOU Xin-wei, LIU Ling-xia, WANG Zhen-xing, MA Jian-fei, 2017: Exploitation of groundwater resources and protection of wetland in the Yuqia Basin, Journal of Groundwater Science and Engineering, 5, 222-234.
    [12] YUE Gao-fan, LV Wen-bin, ZHANG Wei, SU Ran, LIN Wen-jing, 2016: Optimization of geothermal water exploitation in Xinji, Hebei Province, P. R. China, Journal of Groundwater Science and Engineering, 4, 197-203.
    [13] QI Jian-feng, TIAN Meng-ke, CHI Xiu-cheng, WANG Cheng-zhen, 2016: Research on ground fissure origins and mechanisms in Hebei Plain, P. R. China, Journal of Groundwater Science and Engineering, 4, 188-196.
    [14] LIU Hong-wei, Klaus Hisby, ZHOU Yang-xiao, MA Zhen, CHEN She-ming, GUO Xu, 2016: Features and evaluation of sea/saltwater intrusion in southern Laizhou Bay, Journal of Groundwater Science and Engineering, 4, 141-148.
    [15] WANG Ji-ning, MENG Yong-hui, 2016: Characteristics analysis and model prediction of sea-salt water intrusion in lower reaches of the Weihe River, Shandong Province, China, Journal of Groundwater Science and Engineering, 4, 149-156.
    [16] WANG Ye, ZHANG Qiu-lan, WANG Shi-chang, SHAO Jing-li, 2015: Forecasting of water yield of deep-buried iron mine in Yanzhou, Shandong, Journal of Groundwater Science and Engineering, 3, 342-350.
    [17] LIU Yan-guang, ZHU Xi, YUE Gao-fan, LIN Wen-jing, HE Yu-jiang, WANG Gui-ling, 2015: A review of fluid flow and heat transfer in the CO2-EGS, Journal of Groundwater Science and Engineering, 3, 170-175.
    [18] YANG Yun, WU Jian-feng, LIU De-peng, 2015: Numerical modeling of water yield of mine in Yangzhuang Iron Mine, Anhui Province of China, Journal of Groundwater Science and Engineering, 3, 352-362.
    [19] WEI Jia-hua, CHU Hai-bo, WANG Rong, JIANG Yuan, 2015: Numerical simulation of karst groundwater system for discharge prediction and protection design of spring in Fangshan District, Beijing, Journal of Groundwater Science and Engineering, 3, 316-330.
    [20] Yun GAO, 2014: Coastal Case Study-Clarence City Council, Journal of Groundwater Science and Engineering, 2, 21-28.
  • 加载中

Catalog

    Figures(14)  / Tables(6)

    Article Metrics

    Article views (9) PDF downloads(0) Cited by()
    Proportional views
    Related

    JGSE-ScholarOne Manuscript Launched on June 1, 2024.

    Online Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return