• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ EBSCO ProQuest Scopus GeoRef AJ CNKI
Advanced Search
Volume 13 Issue 3
Jun.  2025
Turn off MathJax
Article Contents
Bahiraie M, Hosseini SM, Hossein-Panahi B. 2025. Groundwater resources exploitation management in response to water scarcity challenges in Khuzestan Province, Iran. Journal of Groundwater Science and Engineering, 13(3): 268-285 doi:  10.26599/JGSE.2025.9280054
Citation: Bahiraie M, Hosseini SM, Hossein-Panahi B. 2025. Groundwater resources exploitation management in response to water scarcity challenges in Khuzestan Province, Iran. Journal of Groundwater Science and Engineering, 13(3): 268-285 doi:  10.26599/JGSE.2025.9280054

Groundwater resources exploitation management in response to water scarcity challenges in Khuzestan Province, Iran

doi: 10.26599/JGSE.2025.9280054
More Information
  • Corresponding author: smhosseini@ut.ac.ir
  • Received Date: 2024-08-11
  • Accepted Date: 2025-04-30
  • Available Online: 2025-08-08
  • Publish Date: 2025-06-30
  • Water scarcity in Khuzestan Province, Iran, has attracted growing concerns despite the region's abundant water resources. The province predominantly relies on surface water, prompting an assessment of groundwater's potential to supplement water supplies during surface water shortages. This study assesses the province's groundwater availability and quality under increased exploitation conditions. Between 2008 and 2018, data on groundwater quantity and quality were collected from 204 exploration wells and 70 piezometric wells across 19 aquifers. The analysis revealed that 53% of aquifers in the eastern and northeastern regions experienced declining groundwater levels. Hydrochemical assessments indicated low concentrations of major ions in the northeastern, while high levels were observed from the central region towards the southeast. These variations were attributed to agricultural and industrial activities, seawater intrusion, and the influences of evaporation and geological factors. The dominant hydrochemical facies identified were of the Ca-Cl type. Water quality classification showed that 48% of groundwater samples fell within the C4S4-C4S1 category, primarily in the western, central, and southern regions, while 27% were classified as C3S2, C3S1, and 25% as C2S1, mainly in the northern and eastern regions. The Irrigation WWater Quality (IWQ) index indicated that many samples were suitable for irrigation. Additionally, the analysis potable groundwater was primarily found in the northern, northeastern, and eastern aquifers, with quality declining toward the south. The study highlights that certain aquifers in the northern and eastern regions offer greater potential for sustainable groundwater exploitation during water shortages. These findings provide valuable insights for on how to implement effective land and water management strategies to mitigate future water crises.
  • 加载中
  • Abbasi F, Sohrab F, Abbasi N. 2017. Evaluation of irrigation efficiencies in Iran. Irrigation and Drainage Structures Engineering Research, 17(67): 113–120. https://idser.areeo.ac.ir/article_109617_en.html
    Abbasnia A, Yousefi N, Mahvi AH, et al. 2019. Evaluation of groundwater quality using water quality index and its suitability for assessing water for drinking and irrigation purposes: Case study of Sistan and Baluchistan province (Iran). Human and Ecological Risk Assessment: An International Journal, 25(4): 988−1005. DOI: 10.1080/10807039.2018.1458596.
    Alavi N, Zaree E, Hassani M, et al. 2016. Water quality assessment and zoning analysis of Dez eastern aquifer by Schuler and Wilcox diagrams and GIS. Desalination and Water Treatment, 57: 1−12. DOI: 10.1080/19443994.2015.1137786.
    Almodaresi S, Mohammadrezaei M, Dolatabadi M, et al. 2019. Qualitative analysis of groundwater quality indicators based on Schuler and Wilcox Diagrams: IDW and Kriging Models. Journal of Environmental Health and Sustainable Development, 4. DOI: 10.18502/jehsd.v4i4.2023.
    Ayisa A, Atlabachew A, Ersulo AA, et al. 2022. Groundwater quality mapping for drinking and irrigation purposes using statistical, hydrochemical facies, and water quality indices in Tercha District, Dawuro Zone, Southern Ethiopia. Journal of Degraded and Mining Lands Management, 9: 3367−3377. DOI: 10.15243/jdmlm.2022.092.3367.
    Baghalian K, Haghiry A, Naghavi MR, et al. 2008. Effect of saline irrigation water on agronomical and phytochemical characters of chamomile (Matricaria recutita L.). Scientia Horticulturae, 116(4): 437−441. DOI: 10.1016/j.scienta.2008.02.014.
    Bhunia GS, Keshavarzi A, Shit PK, et al. 2018. Evaluation of groundwater quality and its suitability for drinking and irrigation using GIS and geostatistics techniques in semiarid region of Neyshabur, Iran. Applied Water Science, 8(6): 168. DOI: 10.1007/s13201-018-0795-6.
    Center for Iranian Studies (IRAM). Overview of the water crisis in Khuzestan, 2022. https://iramcenter.org/en/overview-of-the-water-crisis-in-khuzestan_en-705.
    Chidambaram S, Prasanna MV, Venkatramanan S, et al. 2022. Groundwater quality assessment for irrigation by adopting new suitability plot and spatial analysis based on fuzzy logic technique. Environmental research, 204: 111729. DOI: 10.1016/j.envres.2021.111729.
    Doneen LD. 1964. Water quality for agriculture. Department of Irrigation, University of California, California, 48.
    Ehya F, Saeedi F. 2019. Assessment of groundwater quality in the Garmez area (Southeastern Khuzestan province, SW Iran) for drinking and irrigation uses. Carbonates and Evaporites, 34(4): 1443−1454. DOI: 10.1007/s13146-018-0481-7.
    Elango L, Kannan R. 2007. Chapter 11 Rock–water interaction and its control on chemical composition of groundwater. In D. Sarkar, R. Datta, and R. B. T. -D. In E. S. Hannigan (Eds.), Concepts and Applications in Environmental Geochemistry (5: 229–243). Elsevier. DOI: 10.1016/S1474-8177(07)05011-5.
    Famiglietti J, Lo MH, Ho S, et al. 2011. Satellites measure recent rates of groundwater depletion in California's Central Valley. Geophysical Research Letters - Geophys Res Lett, 38. DOI: 10.1029/2010GL046442.
    Gibbs RJ. 1970. Mechanisms controlling world water chemistry. Science, 170(3962): 1088−1090. DOI: 10.1126/science.170.3962.1088.
    Hosseininia M, Hassanzadeh R. 2023. Groundwater quality assessment for domestic and agricultural purposes using GIS, hydrochemical facies and water quality indices: case study of Rafsanjan plain, Kerman province, Iran. Applied Water Science, 13(3): 84. DOI: 10.1007/s13201-023-01891-9.
    Kareem Hayder H, Nassrullah SA. 2025. Impact of climate changes on Arizona State precipitation patterns using high-resolution climatic gridded datasets. Journal of Groundwater Science and Engineering, 13(1): 34−46. DOI: 10.26599/JGSE.2025.9280037.
    Kelly WP. 1957. Adsorbed sodium cation exchange capacity and percentage sodium sorption in alkali soils. Science, 84: 473−477.
    Khuzestan Water and Power Authority, KWPA. 2021. Water Resources of KHP. https://www.kwpa.ir
    Liang CP, Hsu WS, Chien YC, et al. 2019. The combined use of groundwater quality, drawdown index and land use to establish a multi-purpose groundwater utilization plan. Water Resources Management, 33: 4231−4247. DOI: 10.1007/s11269-019-02360-2.
    McKee TB, Doesken NJ, Kleist J. 1993. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, 17: 179–183. https://api.semanticscholar.org/CorpusID:129950974
    Meteorological Organization. 2021. Hydrology and water resources status of KHP in the year 2021 https://www.irimo.ir/eng/index.php
    Meybeck M. 1987. Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 287(5): 401−428. DOI: 10.2475/ajs.287.5.401.
    Mohammadi A, Yaghmaeian K, Hossein F, et al. 2017. Temporal and spatial variation of chemical parameter concentration in drinking water resources of Bandar-e Gaz City using Geographic Information System. Desalination And Water Treatment, 68: 170−176. DOI: 10.5004/dwt.2017.20341.
    Nazemi A, Madani K. 2018. Urban water security: Emerging discussion and remaining challenges. Sustainable Cities and Society, 41: 925−928. DOI: 10.1016/j.scs.2017.09.011.
    Office of Basic Studies of Iran Water Resources Management Company. 2021. Natural Characterization of the KHP. http://wrs.wrm.ir
    Paliwal KV. 1972. Irrigation with saline water. New Delhi.
    Piper AM. 1944. A graphic procedure in the geochemical interpretation of water-analyses. Eos, Transactions American Geophysical Union, 25(6): 914–928. DOI: 10.1029/TR025i006p00914.
    Qin Y, Mueller N, Siebert S, et al. 2019. Flexibility and intensity of global water use. Nature Sustainability, 2: 515−523. DOI: 10.1038/s41893-019-0294-2.
    Richards LA. 1954. Diagnosis and improvement of saline and alkali Soils. Soil Science, 78(2). https://journals.lww.com/soilsci/fulltext/1954/08000/diagnosis_and_improvement_of_saline_and_alkali.12.aspx
    Rogers RJ. 1989. Geochemical comparison of ground water in areas of New England, New York, and Pennsylvania. Groundwater, 27(5): 690−712. DOI: 10.1111/j.1745-6584.1989.tb00483.x.
    Sarath Prasanth SV, Magesh NS, Jitheshlal KV, et al. 2012. Evaluation of groundwater quality and its suitability for drinking and agricultural use in the coastal stretch of Alappuzha District, Kerala, India. Applied Water Science, 2(3): 165−175. DOI: 10.1007/s13201-012-0042-5.
    Schoeller H. 1977. Geochemistry of groundwater. Groundwater studies, an international guide for research and practice. UNESCO, 1–18.
    Shakour S, Chitsazan M, Mirzaee SY. 2023. Zonation of groundwater quality in terms of drinkability, using Fuzzy Logic and Schoeller deterministic method for Northern Dezful - Andimeshk Plain, Iran. Discover Water, 3(1): 22. DOI: 10.1007/s43832-023-00046-w.
    Sharifi Mahmoud. 2012. Spatial Planning Report: Natural Resources and Water Resources of Khozestan Province. Iran's Urban Planning and Architecture Studies and Research Center: 301.
    Singh J, Sehgal S, Singh K, et al. 2022. An approach to evaluate groundwater quality in the vicinity of three tributaries of the Beas River, North-West India. Applied Water Science, 12. DOI: 10.1007/s13201-021-01541-y.
    Soltani A, Soltani M, Solaimani K. 2018. Groundwater quality assessment of Shush Country for drinking. Iranian Journal of Ecohydrology, 5(4): 1135−1146. DOI: 10.22059/ije.2018.257339.873.
    Subramani TFL, Damodarasamy SR. 2005. Groundwater quality and its suitability for drinking and agricultural use in Chithar River Basin, Tamil Nadu, India. Environmental Geology, 47: 1099−1110. DOI: 10.1007/s00254-005-1243-0.
    Suter J, Rouhi Rad M, Manning D, et al. 2019. Groundwater depletion, climate, and the incremental value of groundwater. Resource and Energy Economics, 63: 101143. DOI: 10.1016/j.reseneeco.2019.101143.
    Tarawneh MSM, Janardhana MR, Ahmed MM. 2019. Hydrochemical processes and groundwater quality assessment in North eastern region of Jordan valley, Jordan. HydroResearch, 2: 129−145. DOI: 10.1016/j.hydres.2020.02.001.
    Techniques MS, Alrowais R, Abdel MM, et al. 2023. Groundwater quality assessment for drinking and irrigation purposes at Al-Jouf Area in KSA Using Artificial Neural. DOI: 10.3390/w15162982.
    Tiwari R. 2011. Assessment of groundwater quality and pollution potential of Jawa Block Rewa District, Madhya Pradesh, India. Proceedings of the International Academy of Ecology and Environmental Science, 1.
    Tomaszkiewicz M, Abou Najm M, El-Fadel M. 2014. Development of a groundwater quality index for seawater intrusion in coastal aquifers. Environmental Modelling and Software, 57: 13–26. DOI: 10.1016/j.envsoft.2014.03.010.
    Valipour H, Sayari M, Bayat N, et al. 2014. Qualitative and quantitative evaluation of groundwater in Isfahan Najaf Abad study area. Journal of Middle East Applied Science and Technology, 16: 2225−2305.
    World Water Quality Alliance. 2021. Assessing groundwater quality: A global perspective: Importance, methods and potential data sources. A Report by the Friends of Groundwater in the World Water Quality Alliance, 60. https://groundwater-quality.org/friends-groundwater-produce-perspective-paper-groundwater-quality
    Willcox L. 1955. Classification and use of irrigation. Washington: United States Department of Agriculture. Circular: 969.
    Yang X, Blagodatsky S, Lippe M, et al. 2016. Land-use change impact on time-averaged carbon balances: Rubber expansion and reforestation in a biosphere reserve, South-West China. Forest Ecology and Management, 372: 149−163. DOI: 10.1016/j.foreco.2016.04.009.
    Yellapu S, Bekkam VR. 2018. Depletion and groundwater balance studies of Kandivalasa River Sub Basin, VizianagarGroundwateram District, and Andhra Pradesh, India. Groundwater for Sustainable Development, 6: 71−78. DOI: 10.1016/j.gsd.2017.11.003.
    Zakir-Hassan G, Punthakey Jehangir F, Shabir G, et al. 2024. Assessing the potential of underground storage of flood water: A case study from Southern Punjab Region in Pakistan. Journal of Groundwater Science and Engineering, 12(4): 387−396. DOI: 10.26599/JGSE.2024.9280029.
    Zekri S. 2020. Water Policies in MENA Countries. DOI: 10.1007/978-3-030-29274-4.
  • 2305-7068/© Journal of Groundwater Science and Engineering Editorial Office. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)

  • Relative Articles

    [1] Bin Ran, Wan-yu Zhang, Zai-yong Zhang, Ze-yu Wu, 2025: Mechanisms of irrigation water recharge in the Kongque River Irrigation District of Xinjiang, China, Journal of Groundwater Science and Engineering, 13, 225-236.  doi: 10.26599/JGSE.2025.9280051
    [2] Mobin Eftekhari, Abbas Khashei-Siuki, 2025: Evaluating machine learning methods for predicting groundwater fluctuations using GRACE satellite in arid and semi-arid regions, Journal of Groundwater Science and Engineering, 13, 5-21.  doi: 10.26599/JGSE.2025.9280035
    [3] Masoud H Hamed, Rebwar N Dara, Marios C Kirlas, 2024: Groundwater vulnerability assessment using a GIS-based DRASTIC method in the Erbil Dumpsite area (Kani Qirzhala), Central Erbil Basin, North Iraq, Journal of Groundwater Science and Engineering, 12, 16-33.  doi: 10.26599/JGSE.2024.9280003
    [4] Djafer Khodja Hakim, Aichour Amina, Metaiche Mehdi, Ferhati Ahmed, 2024: Groundwater quality assessment for drinking and irrigation purposes in Boumerdes Region, Algeria, Journal of Groundwater Science and Engineering, 12, 397-410.  doi: 10.26599/JGSE.2024.9280030
    [5] Parisa Kazerani, Ali Naghi Ziaei, Kamran Davari, 2023: Determining safe yield and mapping water level zoning in groundwater resources of the Neishabour Plain, Journal of Groundwater Science and Engineering, 11, 47-54.  doi: 10.26599/JGSE.2023.9280005
    [6] Hui-feng Yang, Rui-fang Meng, Xi-lin Bao, Wen-geng Cao, Ze-yan Li, Bu-yun Xu, 2022: Assessment of water level threshold for groundwater restoration and over-exploitation remediation the Beijing-Tianjin-Hebei Plain, Journal of Groundwater Science and Engineering, 10, 113-127.  doi: 10.19637/j.cnki.2305-7068.2022.02.002
    [7] Shima Nasiri, Hossein Ansari, Ali Naghi Ziaei, 2022: Determination of water balance equation components in irrigated agricultural watersheds using SWAT and MODFLOW models : A case study of Samalqan plain in Iran, Journal of Groundwater Science and Engineering, 10, 44-56.  doi: 10.19637/j.cnki.2305-7068.2022.01.005
    [8] Yemeli Elida Joelle, Temgoua Emile, Kengni Lucas, Ambrosi Jean-Paul, Momo-nouazi Mathieu, Silatsa-Tedou Francis Brice, Wamba Franck Robean, Tchakam-Kamtchueng Brice, 2021: Hydro-geochemistry of groundwater and surface water in Dschang town (West Cameroon): Alkali and alkaline-earth elements ascertain lithological and anthropogenic constraints, Journal of Groundwater Science and Engineering, 9, 212-224.  doi: 10.19637/j.cnki.2305-7068.2021.03.004
    [9] Van Viet Luong, 2021: Effects of urbanization on groundwater level in aquifers of Binh Duong Province, Vietnam, Journal of Groundwater Science and Engineering, 9, 20-36.  doi: 10.19637/j.cnki.2305-7068.2021.01.003
    [10] Negar Fathi, Mohammad Bagher Rahnama, Mohammad Zounemat Kermani, 2020: Spatial analysis of groundwater quality for drinking purpose in Sirjan Plain, Iran by fuzzy logic in GIS, Journal of Groundwater Science and Engineering, 8, 67-78.  doi: 10.19637/j.cnki.2305-7068.2020.01.007
    [11] Abdullah Al Jami, Meher Uddin Himel, Khairul Hasan, Shilpy Rani Basak, Ayesha Ferdous Mita, 2020: NARX neural network approach for the monthly prediction of groundwater levels in Sylhet Sadar, Bangladesh, Journal of Groundwater Science and Engineering, 8, 118-126.  doi: 10.19637/j.cnki.2305-7068.2020.02.003
    [12] Mohammad Tofayal Ahmed, Minhaj Uddin Monir, Md Yeasir Hasan, Md Mominur Rahman, Md Shamiul Islam Rifat, Md Naim Islam, Abu Shamim Khan, Md Mizanur Rahman, Md Shajidul Islam, 2020: Hydro-geochemical evaluation of groundwater with studies on water quality index and suitability for drinking in Sagardari, Jashore, Journal of Groundwater Science and Engineering, 8, 259-273.  doi: 10.19637/j.cnki.2305-7068.2020.03.006
    [13] A Muthamilselvan, N Rajasekaran, R Suresh, 2019: Mapping of hard rock aquifer system and artificial recharge zonation through remote sensing and GIS approach in parts of Perambalur District of Tamil Nadu, India, Journal of Groundwater Science and Engineering, 7, 264-281.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.007
    [14] XU Jun-xiang, WANG Shao-juan, LI Chang-suo, XING Li-ting, 2019: Numerical analysis and evaluation of groundwater recession in a flood detention basin, Journal of Groundwater Science and Engineering, 7, 253-263.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.006
    [15] WANG Ying, CHEN Zong-yu, 2016: Responses of groundwater system to water development in northern China, Journal of Groundwater Science and Engineering, 4, 69-80.
    [16] GUO Li-jun, YAN Ya-ya, GUO Li-na, MA Jin-long, LV Ming-yu, 2016: GIS-based spatial and temporal changes of land occupation caused by mining activities-a study in eastern part of Hubei Province, Journal of Groundwater Science and Engineering, 4, 60-68.
    [17] Ramasamy Jayakumar, 2015: Groundwater level monitoring-importance global groundwater monitoring network, Journal of Groundwater Science and Engineering, 3, 295-305.
    [18] HAN Mei, JIA Na, LI Ke, ZHAO Guo-xing, LIU Bing-bing, LIU Sheng-hua, LIU Jie, 2014: Analysis of bromate and bromide in drinking water by ion chromatography-inductively coupled plasma mass spectrometry, Journal of Groundwater Science and Engineering, 2, 48-53.
    [19] Guiling Wang, Wenjing Lin, Wei Zhang, Qi Fan, Qinghua Wu, 2013: Study on Movement Evolution Law of Soil Water in Condition of Agronomic Water Saving Irrigation, Journal of Groundwater Science and Engineering, 1, 33-45.
    [20] Meng-jie Wu, Hui-zhen Hen, 2013: Brief Talk of Groundwater Resources in Role of Rural Drinking Water Safety and Construction of City Emergency Water Source, Journal of Groundwater Science and Engineering, 1, 40-52.
  • 加载中

Catalog

    Figures(14)  / Tables(4)

    Article Metrics

    Article views (20) PDF downloads(1) Cited by()
    Proportional views
    Related

    JGSE-ScholarOne Manuscript Launched on June 1, 2024.

    Online Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return