• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ EBSCO ProQuest Scopus GeoRef AJ CNKI
Advanced Search
Volume 13 Issue 3
Jun.  2025
Turn off MathJax
Article Contents
Liu Y, Huang AB, Liu H, et al. 2025. Dynamic evolution characteristics and influencing mechanisms of groundwater in the Zoige Plateau. Journal of Groundwater Science and Engineering, 13(3): 286-300 doi:  10.26599/JGSE.2025.9280055
Citation: Liu Y, Huang AB, Liu H, et al. 2025. Dynamic evolution characteristics and influencing mechanisms of groundwater in the Zoige Plateau. Journal of Groundwater Science and Engineering, 13(3): 286-300 doi:  10.26599/JGSE.2025.9280055

Dynamic evolution characteristics and influencing mechanisms of groundwater in the Zoige Plateau

doi: 10.26599/JGSE.2025.9280055
More Information
  • Corresponding author: 362641894@qq.com
  • Received Date: 2024-10-20
  • Accepted Date: 2025-04-16
  • Available Online: 2025-08-08
  • Publish Date: 2025-06-30
  • The Zoige Plateau, situated on the eastern edge of the Qinghai-Tibet Plateau, exhibits complex groundwater dynamics influenced by alpine hydrological processes and climatic variability. This study investigates the spatiotemporal evolution of groundwater in the Zoige alpine basin from 2002 to 2024 using an integrated approach that combines in-situ monitoring, GRACE satellite observations, and GLDAS model outputs. Using the Innovative Trend Analysis (ITA) method alongside conventional statistical techniques, we identified both seasonal fluctuations and long-term depletion trends. Groundwater levels exhibited clear wet–dry season contrasts and a cumulative decline of up to 2.3 m in grassland flatlands, corresponding to a long-term depletion rate of 0.4 cm/a as indicated by GRACE-derived groundwater storage. The most significant declines occurred in grassland zones, driven by wetland degradation and elevated evapotranspiration, while mountain regions showed slower losses (~0.1 cm/a) primarily supported by sustained snowmelt recharge. Through the integration of multi-source datasets, this study highlights the spatial heterogeneity and key drivers of groundwater variation, providing a robust framework for sustainable groundwater management under climatic and anthropogenic pressures in alpine wetland systems.
  • 加载中
  • Bao W, Duan AM, You QL, et al. 2024. Research progress on climate change and its impact on water resources over the Tibetan Plateau. Climate Change Research, 20(2): 158−169. (in Chinese) DOI: 10.12006/j.issn.1673-1719.2023.247.
    Beaudon E, Gabrielli P, Sierra-Hernández MR, et al. 2017. Central Tibetan Plateau atmospheric trace metals contamination: A 500-year record from the Puruogangri ice core. Science of the Total Environment, 601: 1349−1363. DOI: 10.1016/j.scitotenv.2017.05.195.
    Bookhagen B, Burbank DW. 2010. Toward a complete himalayan hydrological budget: spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. Journal of Geophysical Research: Earth Surface, 115(F3). DOI: 10.1029/2009jf001426.
    Chen FH, Zhang JF, Liu JB, et al. 2020. Climate change vegetation history and landscape responses on the Tibetan Plateau during the Holocene: A comprehensive review. Quaternary Science Reviews, 243: 106444. DOI: 10.1016/j.quascirev.2020.106444.
    Chen FH, Fu BJ, Xia J, et al. 2019. Major advances in studies of the physical geography and living environment of China during the past 70 years and future prospects. Science China Earth Sciences, 62: 1665−1701. DOI: 10.1007/s11430-019-9522-7.
    Chowdari KK, Deb Barma S, Bhat N, et al. 2023. Trends of seasonal and annual rainfall of semi-arid districts of Karnataka, India: application of innovative trend analysis approach. Theoretical and Applied Climatology, 152: 241−264. DOI: 10.1007/s00704-023-04400-9.
    Deng C, Zhang BQ, Cheng LY, et al. 2019. Vegetation dynamics and their effects on surface water-energy balance over the Three-North Region of China. Agricultural and Forest Meteorology, 275: 79−90. DOI: 10.1016/j.agrformet.2019.05.012.
    Gleeson T, Cuthbert M, Ferguson G, et al. 2020. Global groundwater sustainability, resources, and systems in the Anthropocene. Annual Review of Earth and Planetary Sciences, 48: 431−463. DOI: 10.1146/annurev-earth-071719-055251.
    Huss M, Hock R. 2018. Global-scale hydrological response to future glacier mass loss. Nature Climate Change, 8: 135−140. DOI: 10.1038/s41558-017-0049-x.
    Immerzeel WW, Van Beek LPH, Bierkens MFP. 2010. Climate change will affect the Asian water towers. Science, 328(5984): 1382−1385. DOI: 10.1126/science.1183188.
    IPCC. 2021. Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://www.ipcc.ch/report/ar6/wg1/
    Kang S, Xu Y, You Q, et al. 2010. Review of climate and cryospheric change in the Tibetan Plateau. Environmental Research Letters, 5(1): 015101. DOI: 10.1088/1748-9326/5/1/015101.
    Li B, Yu Z, Liang Z, et al. 2014. Effects of climate variations and human activities on runoff in the Zoige alpine wetland in the eastern edge of the Tibetan Plateau. Journal of Hydrologic Engineering, 19(5): 1026−1035. DOI: 10.1061/(ASCE)HE.1943-5584.0000868.
    Li Z, Gao P, You Y. 2018. Characterizing hydrological connectivity of artificial ditches in Zoige Peatlands of Qinghai-Tibet Plateau. Water, 10(10): 1364. DOI: 10.3390/w10101364.
    Minea I, Boicu D, Chelariu OE. 2020. Detection of groundwater levels trends using innovative trend analysis method in temperate climatic conditions. Water, 12(8): 2129. DOI: 10.3390/w12082129.
    Maxwell RM, Condon LE. 2016. Connections between groundwater flow and transpiration partitioning. Science, 353(6297): 377−380. DOI: 10.1126/science.aaf7891.
    Rodell M, Houser PR, Jambor U, et al. 2004. The global land data assimilation system. Bulletin of the American Meteorological Society, 85(3): 381−394. DOI: 10.1175/BAMS-85-3-381.
    Seenu PZ, Jayakumar KV. 2021. Comparative study of innovative trend analysis technique with Mann-Kendall tests for extreme rainfall. Arabian Journal of Geosciences, 14: 1−15. DOI: 10.1007/s12517-021-06906-w.
    Sen Z. 2012. Innovative trend analysis methodology. Journal of Hydrologic Engineering, 17(9): 1042−1046. DOI: 10.1061/(ASCE)HE.1943-5584.0000556.
    Shen G, Yang X, Jin Y, et al. 2019. Remote sensing and evaluation of the wetland ecological degradation process of the Zoige Plateau Wetland in China. Ecological Indicators, 104: 48−58. DOI: 10.1016/j.ecolind.2019.04.063.
    Smith LC, Sheng Y, MacDonald GM, et al. 2005. Disappearing Arctic lakes. Science, 308(5727): 1429. DOI: 10.1126/science.1108142.
    Soncini A, Bocchiola D, Azzoni RS, et al. 2017. A methodology for monitoring and modeling of high altitude alpine catchments. Progress in Physical Geography, 41(4): 393−420. DOI: 10.1177/0309133317710832.
    Swain S, Sahoo S, Taloor AK, et al. 2022. Exploring recent groundwater level changes using Innovative Trend Analysis (ITA) technique over three districts of Jharkhand, India. Groundwater for Sustainable Development, 18: 100783. DOI: 10.1016/j.gsd.2022.100783.
    Yang M, Wang X, Pang G, et al. 2019. The Tibetan Plateau cryosphere: Observations and model simulations for current status and recent changes. Earth-Science Reviews, 190: 353−369. DOI: 10.1016/j.earscirev.2018.12.018.
    Zakwan M. 2021. Trend analysis of groundwater level using innovative trend analysis. In: Pande, C.B., Moharir, K.N. (eds) Groundwater Resources Development and Planning in the Semi-Arid Region. Springer, Cham. DOI: 10.1007/978-3-030-68124-1_20.
    Zhao L, Hu GJ, Zou DF, et al. 2019. Permafrost changes and its effects on hydrological processes on Qinghai-Tibet plateau. Bulletin of Chinese Academy of Sciences, 34(11): 1233−1246. (in Chinese) DOI: 10.16418/j.issn.1000-3045.2019.11.006.
  • 2305-7068/© Journal of Groundwater Science and Engineering Editorial Office. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)

  • Relative Articles

    [1] Mobin Eftekhari, Abbas Khashei-Siuki, 2025: Evaluating machine learning methods for predicting groundwater fluctuations using GRACE satellite in arid and semi-arid regions, Journal of Groundwater Science and Engineering, 13, 5-21.  doi: 10.26599/JGSE.2025.9280035
    [2] Zhao-huan Huang, Zhi-bin Huo, Wei Wang, Ji-xiang Zhu, Chun-hao Zhang, Rui-peng Xi, 2025: Analysis of driving factors for land subsidence in typical cities of the North China Plain based on geodetector technology, Journal of Groundwater Science and Engineering, 13, 74-89.  doi: 10.26599/JGSE.2025.9280040
    [3] Ming-nan Yang, Liang Zhu, Jing-tao Liu, Yu-xi Zhang, Bing Zhou, 2023: Influence of water conservancy project on runoff in the source region of the Yellow River and wetland changes in the Lakeside Zone, China, Journal of Groundwater Science and Engineering, 11, 333-346.  doi: 10.26599/JGSE.2023.9280027
    [4] Chao Song, Man Liu, Qiu-yao Dong, Lin Zhang, Pan Wang, Hong-yun Chen, Rong Ma, 2022: Variation characteristics of CO2 in a newly-excavated soil profile, Chinese Loess Plateau: Excavation-induced ancient soil organic carbon decomposition, Journal of Groundwater Science and Engineering, 10, 19-32.  doi: 10.19637/j.cnki.2305-7068.2022.01.003
    [5] Liang Zhu, Ming-nan Yang, Jing-tao Liu, Yu-xi Zhang, Xi Chen, Bing Zhou, 2022: Evolution of the freeze-thaw cycles in the source region of the Yellow River under the influence of climate change and its hydrological effects, Journal of Groundwater Science and Engineering, 10, 322-334.  doi: 10.19637/j.cnki.2305-7068.2022.04.002
    [6] Ya-ci Liu, Zhao-ji Zhang, Xin-yi Zhao, Meng-tuo Wen, Sheng-wei Cao, Ya-song Li, 2021: Arsenic contamination caused by roxarsone transformation with spatiotemporal variation of microbial community structure in a column experiment, Journal of Groundwater Science and Engineering, 9, 304-316.  doi: 10.19637/j.cnki.2305-7068.2021.04.004
    [7] Afraz Mehdi, Eftekhari Mobin, Akbari Mohammad, Ali Haji Elyasi, Noghani Zahra, 2021: Application assessment of GRACE and CHIRPS data in the Google Earth Engine to investigate their relation with groundwater resource changes (Northwestern region of Iran), Journal of Groundwater Science and Engineering, 9, 102-113.  doi: 10.19637/j.cnki.2305-7068.2021.02.002
    [8] Yacob T Tesfaldet, Avirut Puttiwongrak, Tanwa Arpornthip, 2020: Spatial and temporal variation of groundwater recharge in shallow aquifer in the Thepkasattri of Phuket, Thailand, Journal of Groundwater Science and Engineering, 8, 10-19.  doi: 10.19637/j.cnki.2305-7068.2020.01.002
    [9] SADIKI Moulay Lhassan, EL MANSOURI Bouabid, BENSEDDIK Badr, CHAO Jamal, KILI Malika, EL MEZOUARY Lhoussaine, 2019: Improvement of groundwater resources potential by artificial recharge technique: A case study of Charf El Akab aquifer in the Tangier region, Morocco, Journal of Groundwater Science and Engineering, 7, 224-236.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.003
    [10] Pezhman ROUDGARMI, Ebrahim FARAHANI, 2017: Investigation of groundwater quantitative change, Tehran Province, Iran, Journal of Groundwater Science and Engineering, 5, 278-285.
    [11] SHANG Man-ting, LIU Pei-gui, LEI Chao, LIU Ming-chao, WU Liang, 2017: Effect of climate change on the trends of evaporation of phreatic water from bare soil in Huaibei Plain, China, Journal of Groundwater Science and Engineering, 5, 213-221.
    [12] Ramasamy Jayakumar, Eunhee Lee, 2017: Climate change and groundwater conditions in the Mekong Region–A review, Journal of Groundwater Science and Engineering, 5, 14-30.
    [13] Khongsab Somphone, OunakoneKone Xayviliya, 2017: Climate change and groundwater resources in Lao PDR, Journal of Groundwater Science and Engineering, 5, 53-58.
    [14] Duong D Bui, Nghia C Nguyen, Nuong T Bui, Anh T T Le, Dao T Le, 2017: Climate change and groundwater resources in Mekong Delta, Vietnam, Journal of Groundwater Science and Engineering, 5, 76-90.
    [15] SRISUK Kriengsak, NETTASANA Tussanee, 2017: Climate change and groundwater resources in Thailand, Journal of Groundwater Science and Engineering, 5, 67-75.
    [16] Than Zaw, Maung Maung Than, 2017: Climate change and groundwater resources in Myanmar, Journal of Groundwater Science and Engineering, 5, 59-66.
    [17] BAI Bing, CHENG Yan-pei, JIANG Zhong-cheng, ZHANG Cheng, 2017: Climate change and groundwater resources in China, Journal of Groundwater Science and Engineering, 5, 44-52.
    [18] Chamroeun SOK, Sokuntheara CHOUP, 2017: Climate change and groundwater resources in Cambodia, Journal of Groundwater Science and Engineering, 5, 31-43.
    [19] Yun GAO, 2014: Coastal Case Study-Clarence City Council, Journal of Groundwater Science and Engineering, 2, 21-28.
    [20] CHEN Qu, 2014: Anticipatory Adaptation Approaches to Climate Change--A Review and Discussion of Southern Australia’s Sustainable Water Management and Its Strategies and Shortcomings, Journal of Groundwater Science and Engineering, 2, 54-61.
  • 加载中

Catalog

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (11) PDF downloads(0) Cited by()
    Proportional views
    Related

    JGSE-ScholarOne Manuscript Launched on June 1, 2024.

    Online Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return