• pISSN 2305-7068
  • eISSN 2097-7476
  • Indexed by ESCI CABI CAS
  • DOAJ EBSCO ProQuest Scopus GeoRef AJ CNKI
Advanced Search
Volume 14 Issue 1
Mar.  2026
Turn off MathJax
Article Contents
Atoui M, Agoubi B. 2026. Vulnerability assessment in fractured aquifer using improved vulnerability index: Applied to Gabes aquifer, Southeastern Tunisia. Journal of Groundwater Science and Engineering, 14(1): 69-82 doi:  10.26599/JGSE.2026.9280073
Citation: Atoui M, Agoubi B. 2026. Vulnerability assessment in fractured aquifer using improved vulnerability index: Applied to Gabes aquifer, Southeastern Tunisia. Journal of Groundwater Science and Engineering, 14(1): 69-82 doi:  10.26599/JGSE.2026.9280073

Vulnerability assessment in fractured aquifer using improved vulnerability index: Applied to Gabes aquifer, Southeastern Tunisia

doi: 10.26599/JGSE.2026.9280073
More Information
  • Corresponding author: Agoubi.Belgacem@gmail.com
  • Received Date: 2024-08-12
  • Accepted Date: 2025-11-15
  • Available Online: 2026-01-25
  • Publish Date: 2026-03-15
  • The Gabes aquifer system, located in southeastern Tunisia, is a crucial resource for supporting local socio-economic activities. Due to its dual porosity structure, is particularly vulnerable to pollution. This study aims to develop a hybrid model that combines the Fracture Aquifer Index (FAI) with the conventional GOD (Groundwater occurrence, Overall lithology, Depth to water table) method, to assess groundwater vulnerability in fractured aquifer. To develop the hybrid model, the classical GOD method was integrated with FAI to produce a single composite index. Each parameter within both GOD and FAI was scored, and a final index was calculated to delineate vulnerable areas. The results show that the study area can be classified into four vulnerability levels: Very low, low, moderate, and high, indicating that approximately 8% of the area exhibits very low vulnerability, 29% has low vulnerability, 25% falls into the moderate category, and 38% is considered highly vulnerable. The FAI-GOD model further incorporates fracture network characteristics. This refinement reduces the classification to three vulnerability classes: Low, medium, and high. The outcomes demonstrate that 46% of the area is highly vulnerable due to a dense concentration of fractures, while 17% represents an intermediate zone characterized by either shallow or deeper fractures. In contrast, 37% corresponds to areas with lightly fractured rock, where the impact on vulnerability is minimal. Multivariate statistical analysis was employed using Principal Components Analysis (PCA) and Hierarchical Cluster Analysis (HCA) on 24 samples across six variables. The first three components account for over 76% of the total variance, reinforcing the significance of fracture dynamics in classifying vulnerability levels. The FAI-GOD model removes the very-low-vulnerability class and expands the spatial extent of low- and high-vulnerability zones, reflecting the dominant influence of fracture networks on aquifer sensitivity. While both indices use a five-class system, FAI-GOD redistributes vulnerability by eliminating very-low-vulnerability areas and amplifying low/high categories, highlighting the critical role of fractures. A strong correlation (R2 = 0.94) between the GOD and FAI-GOD indices, demonstrated through second-order polynomial regression, confirms the robustness of the FAI-GOD model in accurately predicting vulnerability to pollution. This model provides a useful framework for assessing the vulnerability of complex aquifers and serves as a decision-making tool for groundwater managers in similar areas.
  • 加载中
  • Abdullah TO, Ali SS, Al-Ansari NA, et al. 2015. Groundwater vulnerability mapping using lineament density on standard DRASTIC model: Case study in halabja saidsadiq basin, Kurdistan Region, Iraq. Engineering, 7(10): 644−667. DOI:  10.4236/eng.2015.710057.
    Aghamelu OP, Omeka ME, Unigwe CO. 2023. Modeling the vulnerability of groundwater to pollution in a fractured shale aquifer in SE Nigeria using information entropy theory, geospatial, and statistical modeling approaches. Modeling Earth Systems and Environment, 9(2): 2385−2406. DOI:  10.1007/s40808-022-01640-y.
    Akintorinwa OJ, Atitebi MO, Akinlalu AA. 2020. Hydrogeophysical and aquifer vulnerability zonation of a typical basement complex terrain: A case study of Odode Idanre southwestern Nigeria. Heliyon, 6(8): e04549. DOI:  10.1016/j.heliyon.2020.e04549.
    Atoui M, Agoubi B. 2022. Assessment of groundwater vulnerability and pollution risk using AVI, SPI, and RGPI indexes: Applied to southern Gabes aquifer system, Tunisia. Environmental Science and Pollution Research, 29(33): 50881−50894. DOI:  10.1007/s11356-022-19309-5.
    Atoui M, Agoubi B. 2024. Groundwater flow modeling and recharge estimation of heterogeneous aquifer: Applied to Matmata aquifer, southeastern, Tunisia. Physics and Chemistry of the Earth, Parts A/B/C, 133: 103513. DOI:  10.1016/j.pce.2023.103513.
    Awawdeh M, Al-Kharabsheh N, Obeidat M, et al. 2020. Groundwater vulnerability assessment using modified SINTACS model in Wadi Shueib, Jordan. Annals of GIS, 26(4): 377−394. DOI:  10.1080/19475683.2020.1773535.
    Awawdeh MM, Jaradat RA. 2010. Evaluation of aquifers vulnerability to contamination in the Yarmouk River basin, Jordan, based on DRASTIC method. Arabian Journal Geosciences, 3: 273−282. DOI:  10.1007/s12517-009-0074-9.
    Aydi H, Balti H, Aydi A, et al. 2022. Contribution of electrical prospecting to the aquifer characterization in El Mouazir-Matmata Nouvelle in Southern Gabes, Southeastern Tunisia. Arabian Journal of Geosciences, 15(13): 1234. DOI:  10.1007/s12517-022-10463-1.
    Ben Hamouda MF, Mamou A, Bejaoui J, et al. 2013. Hydrochemical and isotopic study of groundwater in the north djeffara aquifer, gulf of gabès, southern Tunisia. International Journal of Geosciences, 4(8): 1−10. DOI:  10.4236/ijg.2013.48a001.
    Blanchard AF, Théophile L, Marc YT, et al. 2016. Cartographie de la vulnérabilité À La pollution des aquifères du socle Précambrien: Cas de la région D'oumé (centre-ouest de la Côte D'ivoire). European Scientific Journal, 12(20): 374. DOI:  10.19044/esj.2016.v12n20p374.
    Casadiegos-Agudelo L, Cetina-Tarazona MA, Dominguez-Rivera IC, et al. 2024. Validation of the intrinsic vulnerability to pollution of fractured siliciclastic aquifers using natural background levels. Groundwater for Sustainable Development, 25: 101143. DOI:  10.1016/j.gsd.2024.101143.
    Das R, Subba Rao N, Sahoo HK, et al. 2023. Nitrate contamination in groundwater and its health implications in a semi-urban region of Titrol block, Jagatsinghpur district, Odisha, India. Physics and Chemistry of the Earth, Parts A/B/C, 132: 103424. DOI:  10.1016/j.pce.2023.103424.
    De Souza MER, de Vargas T, Belladona R. 2022. Assessment of the vulnerability to contamination of fractured aquifers based on DRASTIC method. Águas Subterrâneas, 35(3). DOI:  10.14295/ras.v35i3.30086
    Devi SP, Srinivasulu S, Raju KK. 2001. Delineation of groundwater potential zones and electrical resistivity studies for groundwater exploration. Environmental Geology, 40(10): 1252−1264. DOI:  10.1007/s002540100304.
    Foster SSD. 1987. Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. Vulnerability of soil and groundwater to pollutants. TNO committee on hydrological research. The Hague, Proc Info. 38: 69−86.
    Haidery A, Umar R. 2024. Improving groundwater vulnerability assessment in structurally controlled hard rock aquifer: Insight from lineament density and land use/land cover pattern. Environmental Monitoring and Assessment, 196(8): 723. DOI:  10.1007/s10661-024-12880-z.
    Hamza SM, Ahsan A, Imteaz MA, et al. 2017. GIS-based FRASTIC model for pollution vulnerability assessment of fractured-rock aquifer systems. Environmental Earth Sciences, 76(5): 197. DOI:  10.1007/s12665-017-6520-1.
    Hao J, Zhang YX, Jia YW, et al. 2017. Assessing groundwater vulnerability and its inconsistency with groundwater quality, based on a modified DRASTIC model: A case study in Chaoyang District of Beijing City. Arabian Journal of Geosciences, 10(6): 144. DOI:  10.1007/s12517-017-2885-4.
    Hoque MA, Khan AA, Shamsudduha M, et al. 2009. Near surface lithology and spatial variation of arsenic in the shallow groundwater: Southeastern Bangladesh. Environmental Geology, 56(8): 1687−1695. DOI:  10.1007/s00254-008-1267-3.
    Javadi S, Hashemy SM, Mohammadi K, et al. 2017. Classification of aquifer vulnerability using K-means cluster analysis. Journal of Hydrology, 549: 27−37. DOI:  10.1016/j.jhydrol.2017.03.060.
    Jemai S, Kallel A, Agoubi B, et al. 2022. Spatial and temporal rainfall variability and its controlling factors under an arid climate condition: Case of Gabes Catchment, Southern Tunisia. Environment, Development and Sustainability, 24(4): 5496−5513. DOI:  10.1007/s10668-021-01668-7.
    Jenifer MA, Jha MK. 2018. Comparative evaluation of GIS-based models for mapping aquifer vulnerability in hard-rock terrains. Environmental Earth Sciences, 77(19): 672. DOI:  10.1007/s12665-018-7821-8.
    Krasny J, 1993. Classification of transmissivity magnitude and variation. Groundwater, 31 (2): 230−236.
    Khatri N, Tyagi S. 2015. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Frontiers in Life Science, 8(1): 23−39. DOI:  10.1080/21553769.2014.933716.
    Lubianetzky TA, Dickson SE, Guo Y. 2015. Proposed method: Incorporation of fractured rock in aquifer vulnerability assessments. Environmental Earth Sciences, 74(6): 4813−4825. DOI:  10.1007/s12665-015-4471-y.
    MacDonald AM, Bell RA, Kebede S, et al. 2019. Groundwater and resilience to drought in the Ethiopian Highlands. Environmental Research Letters, 14(9): 095003. DOI:  10.1088/1748-9326/ab282f.
    Mendoza JA, Barmen G. 2006. Assessment of groundwater vulnerability in the río artiguas basin, Nicaragua. Environmental Geology, 50(4): 569−580. DOI:  10.1007/s00254-006-0233-1.
    Piscopo G. 2001. Groundwater Vulnerability Map, Explanatory Notes, Castlereagh Catchment, NSW. Department of Land and Water Conservation, Parramatta. ISBN 0 7347 5193 1 CNR 2001.017, 18p.
    Rao NS, Dinakar A, Sravanthi M, et al. 2021. Geochemical characteristics and quality of groundwater evaluation for drinking, irrigation, and industrial purposes from a part of hard rock aquifer of South India. Environmental Science and Pollution Research, 28(24): 31941−31961. DOI:  10.1007/s11356-021-12404-z.
    Rahmani B, Javadi S, Shahdany SMH. 2021. Evaluation of aquifer vulnerability using PCA technique and various clustering methods. Geocarto International, 36(18): 2117−2140. DOI:  10.1080/10106049.2019.1690057.
    Sarikhani R, Kamali Z, Dehnavi AG, et al. 2014. Correlation of lineaments and groundwater quality in dasht-e-arjan fars, SW of Iran. Environmental Earth Sciences, 72(7): 2369−2387. DOI:  10.1007/s12665-014-3146-4.
    Sekar S, Kamaraj J, Poovalingam S, et al. 2023. Appraisal of groundwater vulnerability pollution mapping using GIS based GOD index in tiruchendur, thoothukudi district, India. Water, 15(3): 520. DOI:  10.3390/w15030520.
    Shrestha S, Kafle R, Pandey VP. 2017. Evaluation of index-overlay methods for groundwater vulnerability and risk assessment in Kathmandu Valley, Nepal. Science of The Total Environment, 575: 779−790. DOI:  10.1016/j.scitotenv.2016.09.141.
    Tam VT, De Smedt F, Batelaan O, et al. 2004. Study on the relationship between lineaments and borehole specific capacity in a fractured and karstified limestone area in Vietnam. Hydrogeology Journal, 12: 662−673. DOI:  10.1007/s10040-004-0329-1.
    Torkashvand M, Neshat A, Javadi S, et al. 2021. New hybrid evolutionary algorithm for optimizing index-based groundwater vulnerability assessment method. Journal of Hydrology, 598: 126446. DOI:  10.1016/j.jhydrol.2021.126446.
    Tsegay T, Birhanu B, Azagegn T, et al. 2024. Assessing groundwater vulnerability to pollution in a rapidly urbanizing river basin using a modified DRASTIC land use–lineament density method. Geological Journal, 59(12): 3278−3295. DOI:  10.1002/gj.5059.
  • 2305-7068/© Journal of Groundwater Science and Engineering Editorial Office. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)

  • Relative Articles

    [1] Li-qiang Ge, Xin Yuan, Liu Yang, 2025: Application of metagenomics in the study of groundwater microorganisms, Journal of Groundwater Science and Engineering, 13, 90-100.  doi: 10.26599/JGSE.2025.9280041
    [2] Hayder H. Kareem, Shahla Abdulqader Nassrullah, 2025: Impact of climate changes on Arizona State precipitation patterns using high-resolution climatic gridded datasets, Journal of Groundwater Science and Engineering, 13, 34-46.  doi: 10.26599/JGSE.2025.9280037
    [3] Jing-tao Shi, Ge Gao, Jun-jian Liu, Yu-ge Jiang, Bo Li, Xiao-yan Hao, Jun-chao Zhang, Zhao-yi Li, Huan Sun, 2025: Ecological vulnerability assessment and driving force analysis of small watersheds in Hilly Regions using sensitivity-resilience-pressure modeling, Journal of Groundwater Science and Engineering, 13, 209-224.  doi: 10.26599/JGSE.2025.9280050
    [4] Stephen Pitchaimani V, Narayanan MSS, Abishek RS, Aswin SK, Jerin Joe RJ, 2024: Delineation of groundwater potential zones using remote sensing and Geographic Information Systems (GIS) in Kadaladi region, Southern India, Journal of Groundwater Science and Engineering, 12, 147-160.  doi: 10.26599/JGSE.2024.9280012
    [5] Jin-xing Guo, Zhi-ping Li, Catalin Stefan, 2022: Managed aquifer recharge (MAR) applications in China–achievements and challenges, Journal of Groundwater Science and Engineering, 10, 57-69.  doi: 10.19637/j.cnki.2305-7068.2022.01.006
    [6] Vinay Kumar Gautam, Mahesh Kothari, P.K. Singh, S.R. Bhakar, K.K. Yadav, 2022: Analysis of groundwater level trend in Jakham River Basin of Southern Rajasthan, Journal of Groundwater Science and Engineering, 10, 1-9.  doi: 10.19637/j.cnki.2305-7068.2022.01.001
    [7] Kessar Cherif, Benkesmia Yamina, Blissag Bilal, Wahib Kébir Lahsen, 2021: Delineation of groundwater potential zones in Wadi Saida Watershed of NW-Algeria using remote sensing, geographic information system-based AHP techniques and geostatistical analysis, Journal of Groundwater Science and Engineering, 9, 45-64.  doi: 10.19637/j.cnki.2305-7068.2021.01.005
    [8] KHELFAOUI Hakim, DAJBRI Larbi, LAKHAL Fatima Zohra, CHAFFAI Hicham, HANI Azzedine, SAYAD Lamine, 2020: Determination of the origin of mineralization and groundwater salinity in the Adrar region in the southwest of Algeria, Journal of Groundwater Science and Engineering, 8, 158-171.  doi: 10.19637/j.cnki.2305-7068.2020.02.007
    [9] Fatima Zahra FAQIHI, Anasse BENSLIMANE, Abderrahim LAHRACH, Mohamed CHIBOUT, Mohamed EL MOKHTAR, 2020: Recognition of the hydrogeological potential using electrical sounding in the KhemissetTiflet region, Morocco, Journal of Groundwater Science and Engineering, 8, 172-179.  doi: 10.19637/j.cnki.2305-7068.2020.02.008
    [10] Negar Fathi, Mohammad Bagher Rahnama, Mohammad Zounemat Kermani, 2020: Spatial analysis of groundwater quality for drinking purpose in Sirjan Plain, Iran by fuzzy logic in GIS, Journal of Groundwater Science and Engineering, 8, 67-78.  doi: 10.19637/j.cnki.2305-7068.2020.01.007
    [11] Mohammad Tofayal Ahmed, Minhaj Uddin Monir, Md Yeasir Hasan, Md Mominur Rahman, Md Shamiul Islam Rifat, Md Naim Islam, Abu Shamim Khan, Md Mizanur Rahman, Md Shajidul Islam, 2020: Hydro-geochemical evaluation of groundwater with studies on water quality index and suitability for drinking in Sagardari, Jashore, Journal of Groundwater Science and Engineering, 8, 259-273.  doi: 10.19637/j.cnki.2305-7068.2020.03.006
    [12] Muhammad Nauman Malik, Mehdi Murtuza, Iqbal Asif, Bakar Muhammad Saifullah Abu, Brahim Aissa, Dk Nur Afiqah Jalwati Puteri, Amer Farhan Rafique, 2019: Adaptive state estimation of groundwater contaminant boundary input flux in a 2-dimensional aquifer, Journal of Groundwater Science and Engineering, 7, 373-382.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.008
    [13] Alhassan H Ismai, Muntasir A Shareef, Wesam Mahmood, 2018: Hydrochemical characterization of groundwater in Balad district, Salah Al-Din Governorate, Iraq, Journal of Groundwater Science and Engineering, 6, 306-322.  doi: 10.19637/j.cnki.2305-7068.2018.04.006
    [14] BAI Bing, CHENG Yan-pei, JIANG Zhong-cheng, ZHANG Cheng, 2017: Climate change and groundwater resources in China, Journal of Groundwater Science and Engineering, 5, 44-52.
    [15] Chamroeun SOK, Sokuntheara CHOUP, 2017: Climate change and groundwater resources in Cambodia, Journal of Groundwater Science and Engineering, 5, 31-43.
    [16] ZHANG Xiang-yang, CHEN Zong-yu, YANG Guo-min, TU Le-yi, HU Shui-ming, 2016: Krypton-85 dating of shallow aquifer in Hebei Plain, Journal of Groundwater Science and Engineering, 4, 328-332.
    [17] ZHANG Chun-chao, WANG Wen-Ke, SUN Yi-bo, LI Xiang-quan,HOU Xin-wei, 2015: Processes of hydrogeochemical evolution of groundwater in the Guanzhong Basin, China, Journal of Groundwater Science and Engineering, 3, 136-146.
    [18] LIU Jun, CHENG Jian-mei, JIANG Fang-yuan, 2015: Methodological study of coastal geological hazard assessment based on GIS, Journal of Groundwater Science and Engineering, 3, 77-85.
    [19] Liang ZHU, Wei-dong KANG, Ji-chao SUN, Jing-tao LIU, 2014: Quantitative Calculation of Groundwater Vulnerability Assessment Based on Quantification Theory III, Journal of Groundwater Science and Engineering, 2, 78-85.
    [20] Jiankang Zhang, Yanpei Cheng, Hua Dong, Qingshi Guo, Kun Liu, Fawang Zhang, 2013: Study on Ecological Environment and Sustainable Land Use Based on Satellite Remote Sensing, Journal of Groundwater Science and Engineering, 1, 89-96.
  • 加载中

Catalog

    Figures(11)  / Tables(5)

    Article Metrics

    Article views (1183) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return