Experimental and numerical investigation for energy dissipation of supercritical flow in sudden contractions Experimental and numerical investigation for energy dissipation of supercritical flow in sudden contractions
  • ISSN 2305-7068
  • Indexed by ESCI CABI CSA
  • Scopus GeoRef AJ CNKI
Advanced Search
Volume 8 Issue 4
Dec.  2020
Turn off MathJax
Article Contents
Rasoul Daneshfaraz, Ehsan Aminvash, Reza Esmaeli, et al. 2020: Experimental and numerical investigation for energy dissipation of supercritical flow in sudden contractions. Journal of Groundwater Science and Engineering, 8(4): 396-406. doi: 10.19637/j.cnki.2305-7068.2020.04.009
Citation: Rasoul Daneshfaraz, Ehsan Aminvash, Reza Esmaeli, et al. 2020: Experimental and numerical investigation for energy dissipation of supercritical flow in sudden contractions. Journal of Groundwater Science and Engineering, 8(4): 396-406. doi: 10.19637/j.cnki.2305-7068.2020.04.009

Experimental and numerical investigation for energy dissipation of supercritical flow in sudden contractions

doi: 10.19637/j.cnki.2305-7068.2020.04.009
More Information
  • Corresponding author: Rasoul Daneshfaraz, E-mail: daneshfaraz@yahoo.com
  • Received Date: 2020-02-25
  • Accepted Date: 2020-05-22
  • Publish Date: 2020-12-01
  • Dealing with kinetic energy is one of the most important problems in hydraulic structures, and this energy can damage downstream structures. This study aims to study energy dissipation of supercritical water flow passing through a sudden contraction. The experiments were conducted on a sudden contraction with 15 cm width. A 30 cm wide flume was installed. The relative contraction ranged from 8.9 to 9.7, where relative contraction refers to the ratio of contraction width to initial flow depth. The Froude value in the investigation varied from 2 to 7. The contraction width of numerical simulation was 5~15 cm, the relative contraction was 8.9~12.42, and the Froude value ranged from 8.9~12.42. In order to simulate turbulence, the k-ε RNG model was harnessed. The experimental and numerical results demonstrate that the energy dissipation increases with the increase of Froude value. Also, with the sudden contraction, the rate of relative depreciation of energy is increased due to the increase in backwater profile and downstream flow depth. The experimentation verifies the numerical results with a correlation coefficient of 0.99 and the root mean square error is 0.02.
  • 加载中
  • Alhamid AA. 2004. S-jump characteristics on sloping basins. Journal of Hydraulic Research, 42(6): 657-662. doi:  10.1080/00221686.2004.9628319
    Babaali H, Shamsai A, Vosoughifar H. 2015. Computational modeling of the hydraulic jump in the stilling basin with convergence walls using CFD codes. Arabian Journal for Science and Engineering, 40: 381-395. doi:  10.1007/s13369-014-1466-z
    Bozkus Z, Pinar C, Metin G. 2007. Energy dissipation by vertically placed screens. Canadian Journal of Civil Engineering, 34(4): 557-564. doi:  10.1139/l06-158
    Bremen R, Hager WH. 1993. T-jump in abruptly expanding channel. Journal of Hydraulic Research, 31(1): 61-78. doi:  10.1080/00221689309498860
    Çakir P. 2003. Experimental investigation of energy dissipation through screens. Ph.D thesis. Ankara: Middle East Technical University.
    Chippada S, Ramaswamy B, Wheeler MF. 1994. Numerical simulation of hydraulic jump. International Journal for Numerical Methods in Engineering, 37: 1381-1397. https://www.researchgate.net/publication/230420609_Numerical_simulation_of_hydraulic_jump?ev=auth_pub
    Castillo LG, Carrillo JM, Carcía JT. 2014. Numerical simulations and laboratory measurements in hydraulic jumps. 11th International conference on hydroinformatics.
    Daneshfaraz R, Sadeghfam S, Kashani M. 2014a. Numerical simulation of flow over stepped spillways. Research in Civil and Environmental Engineering. 2(04): 190-198. https://www.researchgate.net/publication/274715656_NUMERICAL_SIMULATION_OF_FLOW_OVER_STEPPED_SPILLWAYS?ev=prf_high
    Daneshfaraz R, Birol K, Sadeghfam S, et al. 2014b. Simulation of flow over ogee and stepped spillways and comparison of finite element volume and finite element methods. Journal of Water Resource and Hydraulic Engineering, 3(2): 37-47. http://www.academicpub.org/jwrhe/paperInfo.aspx?PaperID=16185
    Daneshfaraz R, Minaei O, Abraham JP, et al. 2019a. 3-D Numerical simulation of water flow over a broad-crested weir with openings. ISH Journal of Hydraulic Engineering, 1-9.
    Daneshfaraz R, Mirzaee R, Ghaderi A, et al. 2019b. The S-jump's characteristics in the rough sudden expanding stilling basin, AUT Journal of Civil Engineering. doi:  10.22060/ajce.2019.16427.5586.
    Daneshfaraz R, Dasineh M, Ghaderi A, et al. 2019c. Numerical modeling of hydraulic properties of sloped broad crested weir. AUT Journal of Civil Engineering. doi:  10.22060/ajce.2019.16184.5574.
    Daneshfaraz R, Ghaderi A. 2017. Numerical investigation of inverse curvature ogee spillways. Civil Engineering Journal, 3(11): 1146-1156. http://www.researchgate.net/publication/321717342_Numerical_Investigation_of_Inverse_Curvature_Ogee_Spillway
    Dey S, Raikar RV. 2007. Characteristics of horseshoe vortex in developing scour holes at piers. Journal of Hydraulic Engineering, 133(4): 399-413. http://www.nrcresearchpress.com/servlet/linkout?suffix=refg10/ref10&dbid=16&doi=10.1139%2fcjce-2012-0240&key=10.1061%2f(asce)0733-9429(2007)133%3a4(399)
    Ghaderi A, Abbasi S, Abraham J, et al. 2020. Efficiency of trapezoidal labyrinth shaped stepped spillways. Flow Measurement and Instrumentation. https://doi.org/j.flowmeasinst.2020.101711 http://www.sciencedirect.com/science/article/pii/S0955598620300595
    Ghaderi A, Abbasi S. 2019. CFD simulation of local scouring around airfoil-shaped bridge piers with and without collar. Sadhana, 44(10): 216. http://www.researchgate.net/publication/336245759_CFD_simulation_of_local_scouring_around_airfoil-shaped_bridge_piers_with_and_without_collar
    Ghazi B, Daneshfaraz R, Jeihouni E. 2019. Numerical investigation of hydraulic characteristics and prediction of cavitation number in Shahid Madani Dam's Spillway. Journal of Groundwater Science and Engineering, 7(4): 323-332. http://gwse.iheg.org.cn/en/article/doi/DOI:%2010.19637/j.cnki.2305-7068.2019.04.003
    Herbrand K. 1973. The spatial hydraulic jump. Journal of Hydraulic Research, 11(3): 205-218. doi:  10.1080/00221687309499774
    Jamil M, Suhail AK. 2010. Theoretical study of hydraulic jump in circular channel section. ISH Journal of Hydraulic Engineering, 16(1): 1-10. doi:  10.1080/09715010.2010.10514984
    Jan C, Chang C. 2009. Hydraulic jumps in an inclined rectangular chute contraction. Journal of Hydraulic Engineering, 135(11): 949-958. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JHEND8000135000011000949000001&idtype=cvips&gifs=Yes
    Lebdiri F, Seghir A, Berreksi A. 2018. Finite element and finite volume method for simulation of free surface flows: Application to spillways. 2nd National Conference on Computational Fluid Dynamics and Technology at SSRN 3373179. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=3373179
    Matin MA, Hasan MR, Islam MA. 2008. Experiment on hydraulic jump in sudden expansion in a sloping rectangular channel. Journal of Civil Engineering (IEB), 36(2): 65-77. https://www.researchgate.net/publication/267797031_Experiment_on_hydraulic_jump_in_sudden_expansion_in_a_sloping_rectangular_channel
    Nayebzadeh B, Lotfollahi yaghin MA, Daneshfaraz R. 2020. Numerical investigation of hydraulic characteristics of vertical drops with screens and gradually wall expanding. Amirkabir Journal of Civil Engineering (In Persian).
    Rajaratnam N, Hurtig KI. 2000. Screen-type energy dissipator for hydraulic structures. Journal of Hydraulic Engineering, 126(4): 310-312.
    Rajaratnam N, Subramanya K. 1968. Hydraulic jumps below abrupt symmetrical expansions. Journal of the Hydraulics Division, 94(2): 481-504. https://www.researchgate.net/publication/292757547_Hydraulic_jumps_below_abrupt_symmetrical_expansions
    Sadeghfam S, Akhtari AA, Daneshfaraz R, et al. 2015. Experimental investigation of screens as energy dissipaters in submerged hydraulic jump. Turkish Journal of Engineering and Environmental Sciences, 38(2): 126-138.
    Sharif N, Rostami A. 2014. Experimental and numerical study of the effect of flow sepration on dissipating energy in compound bucket. APCBEE Procedia, 9: 334-338. https://www.sciencedirect.com/science/article/pii/S2212670814000608
    WU Bao-sheng, Molinas A. 2001. Choked flows through short contractions. Journal of Hydraulic Engineering, 127(8): 657-662. https://www.researchgate.net/publication/265192011_Choked_Flows_through_Short_Contractions
    Yasuda Y, Hager W. 1995. Hydraulic jump in channel contraction. Canadian Journal of Civil Engineering, 22(5): 925-933.
    Zhou Y, Wu J, Ma F, et al. 2020. Uniform flow and energy dissipation of hydraulic jump stepped spillways. Water Supply. https://doi.org/10.2166/ws.2020.056 doi:  10.2166/ws.2020.056
  • [1] GUI Chun-lei, WANG Zhen-xing, MA Rong, ZUO Xue-feng, 2021: Aquifer hydraulic conductivity prediction via coupling model of MCMC-ANN, Journal of Groundwater Science and Engineering, 9, 1-11.  doi: 10.19637/j.cnki.2305-7068.2021.01.001
    [2] XING Hui, DI Yan-song, YONG Yi, 2019: Analysis on the law of occurrence of shallow geothermal energy in Zhoukou City of Henan Province, China, Journal of Groundwater Science and Engineering, 7, 282-287.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.008
    [3] ZHOU Bo, WEI Shan-ming, WANG Tao, NIE Yu-peng, WANG Chuan-qi, 2019: Discussion on establishing monitoring networks for temperature fields of shallow thermal energy in Shandong, China, Journal of Groundwater Science and Engineering, 7, 86-93.
    [4] SOSI Benjamin, BARONGO Justus, GETABU Albert, MAOBE Samson, 2019: Electrical-hydraulic conductivity model for a weathered-fractured aquifer system of Olbanita, Lower Baringo Basin, Kenya Rift, Journal of Groundwater Science and Engineering, 7, 360-372.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.007
    [5] Babak Ghazi, Rasoul Daneshfaraz, Esmaeil Jeihouni, 2019: Numerical investigation of hydraulic characteristics and prediction of cavitation number in Shahid Madani Dam's Spillway, Journal of Groundwater Science and Engineering, 7, 323-332.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.003
    [6] JI Rui-li, ZHANG Ming, SU Rui, GUO Yong-hai, ZHOU Zhi-chao, LI Jie-biao, 2016: Research of in-situ hydraulic test method by using double packer equipment, Journal of Groundwater Science and Engineering, 4, 41-51.
    [7] ZHU Xi, ZHANG Qing-lian, WANG Wan-li, LIU Yan-guang, 2015: Study on the influencing factors of rock-soil thermophysical parameters in shallow geothermal energy, Journal of Groundwater Science and Engineering, 3, 256-267.
    [8] LU Chuan, LI Long, LIU Yan-guang, WANG Gui-ling, 2014: Capillary Pressure and Relative Permeability Model Uncertainties in Simulations of Geological CO2 Sequestration, Journal of Groundwater Science and Engineering, 2, 1-17.
    [9] LIU Chun-lei, YANG Hui-feng, WANG Gui-ling, 2014: Back calculation of soil hydraulic parameters based on HYDRUS-1D, Journal of Groundwater Science and Engineering, 2, 46-53.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(6)

    Article Metrics

    Article views (305) PDF downloads(62) Cited by()
    Proportional views
    Related

    Submission system is out of service now, please submit to our email: gwse-iheg@188.com, hope your understanding!

    投审稿系统正在维护中,请您提交到期刊邮箱gwse-iheg@188.com,给您带来的不便敬请谅解。

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return