Citation: | Eunhee Lee, Kyoochul Ha, Nguyen Thi Minh Ngoc, et al. 2017: Groundwater status and associated issues in the Mekong-Lancang River Basin: International collaborations to achieve sustainable groundwater resources. Journal of Groundwater Science and Engineering, 5(1): 1-13. |
NISC (National Institute of Statistics, Cambodia), ADB (Asian Development Bank). 2003. A compendium on environment statistics, 2003. Cambodia: National Institute of Statistics, Ministry of Planning, the Royal Govt of Cambodia, 273 .
|
Kazama S, Hagiwara T, et al. 2007. Evaluation of groundwater resources in wide inundation areas of the Mekong River basin. Journal of Hydrology, 340(3): 233-243 .
|
May R, Jinno K, Tsutsumi A. 2011. Influence of flooding on groundwater flow in central Cambodia. Environmental Earth Sciences, 63(1): 151-161 .
|
Mainuddin M, Kirby M. 2009. Spatial and temporal trends of water productivity in the lower Mekong River Basin. Agricultural Water Management, 96(11): 1567-1578 .
|
Tjallingii R, Stattegger K, et al. 2010. Infilling and flooding of the Mekong River incised valley during deglacial sea-level rise. Quaternary Science Reviews, 29(11): 1432-1444 .
|
MRC (Mekong River Commission). 2005. Overview of the hydrology of the Mekong Basin. Vientiane: Mekong River Commission, 73 .
|
IGRAC. 2015. Transboundary aquifers of the world 2015. Netherlands: IGRAC .
|
World Bank. 2005. Lao PDR environment monitor. Vientiane: World Bank, 68. Available at: http://siteresources.worldbank.org/NEWS/Resources/report-en.pdf .
|
Erban L E, Gorelick S M, Zebker H A. 2014. Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam. Environmental Research Letters, 9(8): 084010 .
|
Charuratna A, Phu T H. 1992. Hydrogeological map of lower Mekong Basin, 1/1 000 000. Bangkok: Mekong Secretariat, Interim Committee for Coordination of Investigations of the lower Mekong Basin .
|
Polya D A, Berg M, et al. 2008. Arsenic in groundwaters of south-east Asia: With emphasis on Cambodia and Vietnam. Applied Geochemistry, 23(11): 2968-2976 .
|
Phan K, Sthiannopkao S, et al. 2010. Health risk assessment of inorganic arsenic intake of Cambodia residents through groundwater drinking pathway. Water Research, 44(19): 5777-5788 .
|
World Bank. 2003. Vietnam environment monitor. Washington. DC: World Bank, 78. Available at: http://siteresources.worldbank.org/INTEASTASIAPACIFIC/Resources/Vietnam-Environment-Monitor-03.pdf .
|
Masumoto T, Hai P T, Shimizu K. 2008. Impact of paddy irrigation levels on floods and water use in the Mekong River Basin. Hydrological Processes, 22(9): 1321-1328 .
|
Huu-Thoi N, Gupta A D. 2001. Assessment of water resources and salinity intrusion in the Mekong Delta. Water International, 26(1): 86-95 .
|
Carling P A. 2009. The geology of the Lower Mekong River, in The Mekong: Biophysical environment of an international river basin. New York: Academic Press, 13-28 .
|
Worakul M, Painmanakul A, Larbkich W. 2016. Groundwater issues and hydrogeological survey of the Mekong River Basin in Thailand. Daejeon: KIGAM, CCOP, and UNESCO Bangkok, 85-91 .
|
Khongsab S. 2016. Groundwater issues and hydrogeological survey of the Mekong River Basin in Lao PDR. Daejeon: KIGAM, CCOP, and UNESCO Bangkok, 57-71 .
|
Quicksall A N, Bostick B C, Sampson M L. 2008. Linking organic matter deposition and iron mineral transformations to groundwater arsenic levels in the Mekong delta, Cambodia. Applied Geochemistry, 23(11): 3088-3098 .
|
Wint W H, Win T O. 2016. Groundwater issues and hydrogeological survey of the Mekong River Basin in Myanmar. Daejeon: KIGAM, CCOP, and UNESCO Bangkok, 73-82 .
|
Han Z S, Jayakunar R, et al. 2013. Asian transboundary aquifers inventory and mapping. Journal of Groundwater Science and Engineering, 1(3): 1-9 .
|
Olowokudejo TA. 2007. Targeting of high quality groundwater in the province of Vientiane, Laos, PDR. Sweden: Lulea University of Technology, 55 .
|
Johnston R, Kummu M. 2012. Water resource models in the Mekong Basin: A review. Water Resources Management, 26(2): 429-455 .
|
Landon M K. 2011. Preliminary action plan for groundwater Monitoring in the lower Mekong River Basin by the Mekong River Commission, 2011. Phnom Penh, Cambodia: Mekong River Commission, Draft Internal Manuscript, 61 .
|
MRC (Mekong River Commission) 2010. State of the basin report 2010. Vientiane: Mekong River Commission, 232 .
|
Anderson H R. 1978. Hydrogeologic reconnaissance of the Mekong Delta in South Vietnam and Cambodia. Washington: U.S. Government Printing Office .
|
Vuong B T, Lam D T, Van L T M. 2016. Groundwater issues and hydrogeological survey of the Mekong River Basin in Vietnam. Daejeon: KIGAM, CCOP, and UNESCO Bangkok, 93-121 .
|
Chamroeun S, Sokuntheara C. 2016. Groundwater issues and hydrogeological survey of the Mekong River Basin in Cambodia. Daejeon: KIGAM, CCOP, and UNESCO Bangkok, 35-43 .
|
Puri S, Aureli A. 2005. Transboundary aquifers: A global program to assess, evaluate, and develop policy. Groundwater, 43(5): 661-668 .
|
JIANG Z C, LI Y S, CHENG Y P. 2016. Groundwater issues and hydrogeological survey of the Mekong River Basin in China. Daejeon: KIGAM, CCOP, and UNESCO Bangkok, 45-55 .
|
2305-7068/© Journal of Groundwater Science and Engineering Editorial Office.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
[1] | Ertekin Can, Ulugergerli Emin U, 2022: Geoelectrical survey over perched aquifers in the northern part of Upper Sakarya River Basin, Türkiye, Journal of Groundwater Science and Engineering, 10, 335-352. doi: 10.19637/j.cnki.2305-7068.2022.04.003 |
[2] | Vinay Kumar Gautam, Mahesh Kothari, P.K. Singh, S.R. Bhakar, K.K. Yadav, 2022: Analysis of groundwater level trend in Jakham River Basin of Southern Rajasthan, Journal of Groundwater Science and Engineering, 10, 1-9. doi: 10.19637/j.cnki.2305-7068.2022.01.001 |
[3] | KHELFAOUI Hakim, DAJBRI Larbi, LAKHAL Fatima Zohra, CHAFFAI Hicham, HANI Azzedine, SAYAD Lamine, 2020: Determination of the origin of mineralization and groundwater salinity in the Adrar region in the southwest of Algeria, Journal of Groundwater Science and Engineering, 8, 158-171. doi: 10.19637/j.cnki.2305-7068.2020.02.007 |
[4] | Abdelhakim LAHJOUJ, Abdellah EL HMAIDI, Karima BOUHAFA, 2020: Spatial and statistical assessment of nitrate contamination in groundwater: Case of Sais Basin, Morocco, Journal of Groundwater Science and Engineering, 8, 143-157. doi: 10.19637/j.cnki.2305-7068.2020.02.006 |
[5] | Abdulrahman Th Mohammad, Qassem H Jalut, Nadia L Abbas, 2020: Predicting groundwater level of wells in the Diyala River Basin in eastern Iraq using artificial neural network, Journal of Groundwater Science and Engineering, 8, 87-96. doi: 10.19637/j.cnki.2305-7068.2020.01.009 |
[6] | Muhammad Juandi, 2020: Water sustainability model for estimation of groundwater availability in Kemuning district, Riau-Indonesia, Journal of Groundwater Science and Engineering, 8, 20-29. doi: 10.19637/j.cnki.2305-7068.2020.01.003 |
[7] | LI Bo, LI Xue-mei, 2018: Characteristics of karst groundwater system in the northern basin of Laiyuan Spring area, Journal of Groundwater Science and Engineering, 6, 261-269. doi: 10.19637/j.cnki.2305-7068.2018.04.002 |
[8] | Pezhman ROUDGARMI, Ebrahim FARAHANI, 2017: Investigation of groundwater quantitative change, Tehran Province, Iran, Journal of Groundwater Science and Engineering, 5, 278-285. |
[9] | Khongsab Somphone, OunakoneKone Xayviliya, 2017: Climate change and groundwater resources in Lao PDR, Journal of Groundwater Science and Engineering, 5, 53-58. |
[10] | BAI Bing, CHENG Yan-pei, JIANG Zhong-cheng, ZHANG Cheng, 2017: Climate change and groundwater resources in China, Journal of Groundwater Science and Engineering, 5, 44-52. |
[11] | Chamroeun SOK, Sokuntheara CHOUP, 2017: Climate change and groundwater resources in Cambodia, Journal of Groundwater Science and Engineering, 5, 31-43. |
[12] | Ramasamy Jayakumar, Eunhee Lee, 2017: Climate change and groundwater conditions in the Mekong Region–A review, Journal of Groundwater Science and Engineering, 5, 14-30. |
[13] | ZHOU Xun, 2017: Arsenic distribution and source in groundwater of Yangtze River Delta economic region, China, Journal of Groundwater Science and Engineering, 5, 343-353. |
[14] | Than Zaw, Maung Maung Than, 2017: Climate change and groundwater resources in Myanmar, Journal of Groundwater Science and Engineering, 5, 59-66. |
[15] | WU Jian-qiang, WU Xia-yi, 2016: Geological environment impact analysis of a landfill by the Yangtze River, Journal of Groundwater Science and Engineering, 4, 96-102. |
[16] | ZHANG Chun-chao, WANG Wen-Ke, SUN Yi-bo, LI Xiang-quan,HOU Xin-wei, 2015: Processes of hydrogeochemical evolution of groundwater in the Guanzhong Basin, China, Journal of Groundwater Science and Engineering, 3, 136-146. |
[17] | GONG Jian-shi, ZHU Chun-fang, YE Nian-jun, WANG He-sheng, ZHOU Kai-e, HOU Li-li, 2014: Experimental study of impact of a certain polluted river on groundwater along river bank in Southeast China, Journal of Groundwater Science and Engineering, 2, 8-16. |
[18] | Jiansheng Shi, Hongtao Liu, Zhiyuan Liu, Tieliu Chen, 2013: Application of the “Accurate Control Groundwater Resources” Theory in Containment of Groundwater Resource Exhaustion Trend, Journal of Groundwater Science and Engineering, 1, 1-10. |
[19] | Yan Zhang, Shuai Song, Jing Li, Fadong Li, Guangshuai Zhao, Qiang Liu, 2013: Stable Isotope Composition of Rainfall, Surface Water and Groundwater along the Yellow River, Journal of Groundwater Science and Engineering, 1, 82-88. |
[20] | Jingli Shao, Yali Cui, Yunzhang Zhao, 2013: A Study on Infiltration and Groundwater Development in the Influent Zone of the Perched Lower Yellow River, Journal of Groundwater Science and Engineering, 1, 46-53. |
Welcome to Journal of Groundwater Science and Engineering!
Quick Submit