• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Physico-chemical, bacteriological and health hazard effect analysis of the water in Taladanda Canal, Paradip area, Odisha, India

Rabiranjan Prusty Trinath Biswal

Prusty Rabiranjan, Biswal Trinath. 2020: Physico-chemical, bacteriological and health hazard effect analysis of the water in Taladanda Canal, Paradip area, Odisha, India. Journal of Groundwater Science and Engineering, 8(4): 338-348. doi: 10.19637/j.cnki.2305-7068.2020.04.004
Citation: Prusty Rabiranjan, Biswal Trinath. 2020: Physico-chemical, bacteriological and health hazard effect analysis of the water in Taladanda Canal, Paradip area, Odisha, India. Journal of Groundwater Science and Engineering, 8(4): 338-348. doi: 10.19637/j.cnki.2305-7068.2020.04.004

doi: 10.19637/j.cnki.2305-7068.2020.04.004

Physico-chemical, bacteriological and health hazard effect analysis of the water in Taladanda Canal, Paradip area, Odisha, India

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Location map of the study area

    Figure  2.  Statistical graph of the number of people infected by various diseases

    Data 1: The disease diarrhea; data 2: The giardia and cryptosporidium; data 3: Dysentery; data 4: Salmonella; data 5: Escherichia; data 6: Typhoid fever; data 7: Cholera; data 8: The hepatitis A; data 9: Campylobacter.

    Figure  3.  Kind of diseases vs number of people affected in 2016, in which the most people affected by typhoid and the least people affected in escherichia coli, comparing with other water-borne diseases

    Figure  4.  Kind of diseases vs number of people affected in 2017, in which the most people affected by typhoid fever and least people by giardia and cryptosporidium

    Figure  5.  Kind of diseases vs number of people affected in 2018 when the most people affected by typhoid disease and the least by escherichia coli

    Table  1.   The disease that transmitted through the drinking water

    Disease Bacterial agent
    Cholera Vibrio cholera
    Vibrios caused by gastroenteritis Vibrio parahaemolyticus
    Typhoid fever Salmonella typhi
    Bacillary dysentery or shigellosis Shigelladysenteriae, shigellaflexneri, shigellaboydii, shigellasonnei
    Gastroenteritis and acute diarrheas Escherichia coli, particularly serotype
    下载: 导出CSV

    Table  2.   Water parameters, source of occurrence and effect

    Parameters Occurrence Effect
    Turbidity Soil runoff Cause of pathogens
    Colour Dissolved colloidal form of materials
    Odour Degradation by bacterial community Disagreeable odour
    Electrical Conductivity Presence of dissolved solid in water in ionic form If the concentration of ionisable ions is high the conductivity will be more and the property of corrosion increases
    pH Because of different gas and solid mate-rials Cause of bitterness and corrosion of the materials
    DO Because of oxygen present in the dis-solved state in water Most corrosive gas in the environment and cause of corrosion in water and oil pipe lines, boilers, machinery parts, automobile parts
    TH Presence of chloride, sulphates and bicar-bonates of Ca and Mg salts. Mostly found in some mineral present in water Cause of decrease in foam producing capacity with soap solution
    TA (Total Alkalinity) Because of the presence of the different alkaline gases in dissolved state Cause of embrittlement in bottom part of boiler steel
    TDS Because of the dissolved fine particles of solid materials and salts Cause of Gastro-intestinal diseases, eye irritation and corrosion of some metals
    Calcium (Ca) Found from soap and anions of some dissolved salts. Influencing in the dying process of textile indus-tries
    下载: 导出CSV

    Table  3.   Bacteriological analysis of drinking water samples in the Paradip City

    Water samples collected at different areas of Paradip City MPN test in April-2018 MPN test in July-2018 MPN test in December-2018
    TC Bacteria/100 mL FC Bacteria/100 mL TC Bacteria/100 mL FC Bacteria/100 mL TC Bacteria/100 mL FC Bacteria/100 mL
    S1 38.2 10.1 25.3 9.2 45.2 10.2
    S2 44.4 12.4 29.3 8.8 39.1 11.2
    S3 42.5 11.3 31.4 8.5 35.4 10.5
    S4 42.2 10.5 30.4 8.7 36.2 12.1
    S5 45.9 11.2 30.5 9.9 37.5 11.3
    S6 45.6 11.5 31.1 9.2 44.1 10.2
    S7 30.2 11.2 32.1 9.6 36.1 10.5
    S8 48.5 10.6 26.4 9.1 41.2 11.5
    S9 32.4 10.7 29.5 8.2 40.2 8.4
    S10 32.2 10.5 25.6 8.1 41.6 7.9
    S11 32.2 10.4 26.5 8.5 40.5 6.4
    S12 40.3 11.2 26.4 7.9 45.6 10.4
    S13 35.5 10.4 26.3 7.5 46.2 6.5
    S14 34.2 11.4 28.9 9.5 46.2 7.6
    S15 52.4 12.8 26.6 10.5 52.9 13.1
    下载: 导出CSV

    Table  4.   Analysis of physico-chemical parameters in April, 2018

    Parameters Water samples collected in Paradip City during first series
    L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15
    Temperature (℃) 20 19 18 19 19 20 19 19 19 18 18 20 19 21 18
    Colour CL CL CL CL CL CL CL CL CL CL CL CL CL CL CL
    Odour OL OL OL OL OL OL OL OL OL OL OL OL OL OL OL
    pH 6.7 6.6 6.5 6.2 6.5 6.5 6.4 6.4 6.5 6.3 6.4 6.6 6.5 6.6 6.4
    EC (µs/cm) 311 318 312 311 314 311 315 314 316 319 317 318 314 316 317
    TDS (ppm) 751.2 754.2 759.4 752.6 758.6 745.2 746.2 749.2 746.5 742.3 750.1 760.4 764.4 741.2 740.5
    TSS (mg/L) 375.1 378.4 382.1 384.1 389.1 377.4 378.2 389.1 389.4 398.4 385.4 387.8 398.4 388.4 385.4
    TH (ppm) 48 38 47 49 31 37 37 31 52 53 46 43 54 47 59
    Ca (mg/L) 32 40 44 48 32 44 40 27 44 40 40 55 44 48 44
    Mg (mg/L) 24 27 30 30 28 35 41 26 17 15 17 30 37 40 27
    Cl (mg/L) 46 34 40 29 32 31 30 37 35 38 31 40 41 31 37
    DO (mg/L) 4.9 4.5 4.7 5.9 5.01 4.2 4.9 4.8 4.7 4.6 4.8 4.7 4.4 5.1 5.1
    NO2- (mg/L) 28 29 28 25 36 35 41 28 36 3.9 29 32 38 27 31
    NO3- (mg/L) 30 50 30 20 30 30 45 58 35 50 50 40 20 20 48
    SO42- (mg/L) 25 24 32 24 35 24 25 29 27 26 24 28 24 26 26
    Alkalinity 100 150 200 150 150 100 150 150 120 120 100 100 120 100 100
    Mn (mg/L) 0.1 0.3 0.4 0.8 0.5 0.2 0.4 0.7 0.8 0.8 0.5 0.6 0.1 0.4 0.4
    Zn (mg/L) 0.3 0.2 0.1 0.2 0.5 0.4 0.2 0.8 0.2 0.3 0.1 0.6 0.4 0.3 0.1
    Al (mg/L) 0.2 0.2 0.1 0.1 0.01 0.3 0.1 0.2 0.1 0.3 0.1 0.3 0.2 0.5 0.1
    F (mg/L) 1.5 0.2 0.2 0.8 0.5 2.4 1.7 1.5 1.9 0.2 0.2 1.8 0.6 1.5 1.2
    Fe (mg/L) 0.9 0.6 0.8 0.5 0.9 0.9 0.6 0.9 0.1 0.1 0.5 1.2 0.9 1.6 1.4
    Cu (mg/L) 0.2 0.5 0.1 0.2 0.5 0.9 0.2 0.2 0.4 0.5 0.1 0.1 0.9 0.3 1
    Cr (mg/L) 0.1 0.5 0.5 0.1 0.3 0.3 0.2 0.1 0.3 0.1 0.3 0.1 0.2 0.2 0.1
    Hg (mg/L) 0.01 0.03 0.02 0.01 0.04 0.03 0.01 0.02 0.03 0.02 0.02 0.01 0.03 0.02 0.01
    下载: 导出CSV

    Table  5.   Analysis of physico-chemical parameters in July, 2018

    Parameters Water samples collected in Paradip City during second series
    L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15
    Temperature (℃) 21 18 21 20 17 22 18 21 22 19 19 20 19 17 21
    Colour CL CL CL CL CL CL CL CL CL CL CL CL CL CL CL
    Odour OL OL OL OL OL OL OL OL OL OL OL OL OL OL OL
    pH 6.4 5.3 5.2 5.5 5.2 5.1 4.9 4.6 5.2 4.8 4.5 5.1 4.6 5.1 5.3
    EC (µs/cm) 299 306 305 300 301 302 304 307 304 304 302 304 303 299 300
    TDS (ppm) 850.1 863.5 846.2 851.3 831.2 825.1 851.2 831.4 862.1 843.2 856.4 854.5 859.4 863.1 839.1
    TSS (mg/L) 423.2 452.3 421.6 413.2 411.2 429.5 427.4 425.2 427.1 426.1 411.2 419.4 416.2 418.5 417.2
    TH (ppm) 27 26 31 28 26 21 27 29 24 24 25 23 21 24 28
    Ca (mg/L) 36 44 32.6 52 38 55 40 32 28 32 35 32 28.5 36 30
    Mg (mg/L) 30.1 35 30.1 26 40 25 27 32 33 19 30 27 34 28 25
    Cl (mg/L) 19 31 24 21 20 25 26 21 19 23 24 25 26 21 19
    DO (mg/L) 5.1 5.2 5 3.7 3.6 3.5 3.4 4.9 4.5 4.7 4.5 4.3 4.2 4.1 4.2
    NO2- (mg/L) 35 32 30 26 35 52 42 37 27 25 50 35 42 42 40
    NO3- (mg/L) 24 26 25 30 45 48 41 46 48 43 35 38 35 31 34
    SO42- (mg/L) 25 19 32 18 35 21 25 18 27 26 24 15 19 21 26
    Alkalinity 150 120 120 100 100 120 100 100 100 150 200 150 150 100 130
    Mn (mg/L) 0.1 0.2 0.5 0.8 0.7 0.2 0.4 0.7 0.4 0.7 0.5 0.6 0.1 0.3 0.4
    Zn (mg/L) 0.3 0.4 0.1 0.2 0.4 0.4 0.2 0.7 0.2 0.6 0.1 0.6 0.4 0.3 0.1
    Al (mg/L) 0.6 2.3 1.1 0.6 0.8 1.1 1.6 1.2 1.1 0.2 0.8 0.6 0.7 1 1.2
    F (mg/L) 1 0.5 0.3 0.9 0.8 1.2 1.1 0.7 1.2 0.3 0.9 0.8 0.8 0.8 1
    Fe (mg/L) 0.1 0.1 0.1 0.2 0.1 0.3 0.4 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1
    Cu (mg/L) 0.1 0.4 0.1 0.2 0.5 0.9 0.3 0.2 0.6 0.5 0.1 0.1 0.9 0.3 1.0
    Cr (mg/L) 0.1 0.5 0.5 0.1 0.3 0.3 0.2 0.1 0.3 0.1 0.3 0.1 0.2 0.2 0.1
    Hg (mg/L) 0.02 0.03 0.02 0.02 0.04 0.03 0.01 0.02 0.03 0.01 0.02 0.01 0.03 0.02 0.01
    下载: 导出CSV

    Table  6.   Analysis of physicochemical parameters in December, 2018

    Parameters Water samples collected in Paradip City during third series
    L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15
    Temperature (℃) 20 19 18 19 19 20 19 19 19 18 18 20 19 21 18
    Colour CL CL CL CL CL CL CL CL CL CL CL CL CL CL CL
    Odour OL OL OL OL OL OL OL OL OL OL OL OL OL OL OL
    PH 4.5 4.6 4.2 5.2 4.8 4.9 5.3 4.6 4.5 5.1 5.3 4.9 6.2 5.9 5.4
    EC (µs/cm) 301 305 303 302 305 306 312 311 310 314 315 311 309 308 314
    TDS (ppm) 700.4 709.1 720.6 700.1 710.6 708.4 709.5 707.7 709.2 712.5 720.4 711.6 713.4 711.5 718.6
    TSS (mg/L) 351.6 345.6 340.2 346.4 351.5 360.4 342.6 349.2 339.5 347.6 346.7 340.8 353.4 351.4 350.4
    TH (ppm) 26 24 31 29 26 21 27 29 24 24 25 23 26 24 28
    Ca (mg/L) 32 40 44 48 32 44 40 27 44 40 40 55 44 48 44
    Mg (mg/L) 24 27 30 30 28 35 41 26 17 15 17 30 37 40 27
    Cl (mg/L) 106 78 99 106 72 78 90 106 90 78 78 90 108 150 110
    DO (mg/L) 5.8 5.9 5.8 4.5 5.6 5.5 5.0 5.8 5.6 5.9 5.9 5.2 5.8 5.7 5.3
    NO2- (mg/L) 30 50 30 20 30 30 45 58 35 50 50 40 20 20 48
    NO3- (mg/L) 120 120 120 100 120 100 120 80 80 100 115 90 90 120 110
    SO42- (mg/L) 100 150 200 150 150 100 150 150 120 120 100 100 120 100 100
    Alkalinity 100 100 150 200 150 150 100 130 150 120 120 100 100 120 100
    Mn (mg/L) 0.3 0.2 0.5 0.7 0.7 0.2 0.4 0.7 0.2 0.7 0.5 0.6 0.1 0.3 0.4
    Zn (mg/L) 0.3 0.4 0.1 0.2 0.4 0.4 0.2 0.7 0.2 0.5 0.1 0.6 0.4 0.3 0.1
    Al (mg/L) 1.5 0.2 0.2 0.8 0.5 2.4 1.7 1.5 1.9 0.2 0.2 1.8 0.6 2.5 1.9
    F (mg/L) 0.9 0.6 0.8 0.5 0.9 0.9 0.6 0.9 0.1 0.1 0.5 1.2 0.9 1.6 1.4
    Fe (mg/L) 0.2 0.5 0.1 0.2 0.5 0.4 0.2 0.4 0.5 0.7 0.1 0.6 0.7 0.3 1
    Cu (mg/L) 0.1 0.3 0.1 0.2 0.4 0.9 0.3 0.2 0.7 0.5 0.1 0.1 0.8 0.3 1
    Cr (mg/L) 0.2 0.5 0.4 0.1 0.3 0.3 0.2 0.1 0.2 0.1 0.3 0.1 0.2 0.2 0.1
    Hg (mg/L) 0.02 0.04 0.02 0.02 0.05 0.03 0.01 0.01 0.03 0.01 0.02 0.01 0.05 0.02 0.07
    下载: 导出CSV
  • APHA. 2005. Standard methods for the examina-tion of water and wastewater. 21st Edition, American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC.
    Barik RN, Pradhan B, Patel RK. 2005. Trace elements in groundwater of Paradip area. Journal of Industrial Pollution Control, 21(2): 355-362. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204110350376.html
    Cabral JPS. 2010. Water microbiology. Bacterial pathogens and water. International Journal of Environmental Research and Public Health, 7(10): 3657-3703. Doi:  10.3390/ijerph7103657.
    Chatanga P, Ntuli V, Mugomeri E, et al. 2019. Situational analysis of physico-chemical, biochemical and microbiological quality of water along Mohok are river, Lesotho. The Egyptian Journal of Aquatic Research, 45: 45-51. doi:  10.1016/j.ejar.2018.12.002
    Das J, Singh BK, Sahoo RK. 2002. Urban ground water pollution: A case study in Cuttack City, India. Ground Water Monitoring and Reme-diation, 22(3): 95-103. Doi: https://doi.org/ 10.1111/j.1745-6592.2002.tb00758.x
    Das PD, Karim AA, Panda RB. 2013. Assessment of groundwater quality in and around Para-deep phosphate limited at Paradeep area, Odisha, India. International Journal of Recent Scientific Research, 4(10): 1459-1464. http://www.researchgate.net/publication/273124900_assessment_of_groundwater_quality_in_and_around_paradeep_phosphate_limited_at_paradeep_area_odisha_india
    Das PP, Mohapatra PP, Sahoo HK, et al. 2016. A geospatial analysis of fluoride contamination of groundwater in Paradeep area, Odisha, India. Environmental Geochemistry, 19(1 & 2): 11-14. http://www.researchgate.net/publication/316989430_A_GEOSPATIAL_ANALYSIS_OF_FLUORIDE_CONTAMINATION_OF_GROUNDWATER_IN_PARADEEP_AREA_ODISHA_INDIA
    Das SK, Gerwal AS, Bamerjee M. 2011. A brief review: Heavy metal and their analysis. International Journal of Pharmaceutical Sciences Review and Research, 11(1): 13-18.
    Duressa G, Assefa F, Jida M. 2019. Assessment of bacteriological and physicochemical quality of drinking water from source to household tap connection in Nekemte, Oromia, Ethiopia. Journal of Environmental and Public Health, 1-7. Doi: https://doi.org/ 10.1155/2019/2129792
    Gupta N, Pandey P, Hussain J. 2017. Effect of physicochemical and biological parameters on the quality of river water of Narmada, Madhya Pradesh, India. Water Science, 31(1): 11-23. Doi: https://doi.org/ 10.1016/j.wsj.2017.03.002.
    Gwimbi P, George M, Ramphalile M. 2019. Bac-terial contamination of drinking water sources in rural villages of Mohale Basin, Lesotho: exposures through neighborhood sanitation and hygiene practices, Environmental Health and Preventive Medicine, 24: 33-40. Doi:  10.1186/s12199-019-0790-z
    Hosseini N, Johnston J, Lindenschmidt K. 2017. Impacts of climate change on the water quality of a regulated Prairie River. Water, 9(3): 1-15. Doi:  10.3390/w9030199
    Huntington T, Nimmo F, Macfadyen G. 2015. Fish landings at the world's commercial fishing ports. Journal of Ocean and Coastal Economics, 2(1): 1-9. Doi: https://doi.org/ 10.15351/2373-8456.1031
    ISI. 1983. Indian standard: Specification for drinking water, New Delhi. India: Indian Standards Institution.
    Kar T, Debata S. 2019. Breeding ecology of the endangered black-bellied tern (Sterna acuticauda) in eastern India and implications for conservation. Water Birds, 42(3): 314-320. Doi: https://doi.org/ 10.1675/063.042.0307
    Kiss J. 2019. Pesticides in agriculture: Are we sustainable yet? Journal of Consumer Protec-tion and Food Safety, 14: 205-207. Doi: https://doi.org/ 10.1007/s00003-019-01246-0
    Lultle DR, Siwakoti M, Jha PK. 2019. Climate change and finger millet: Perception, trend and impact on yield in different ecological regions in Central Nepal. Journal of Mountain Science, 16(4):821-835. Doi: https://doi.org/ 10.1007/s11629-018-5165-1
    Mansoori N, Bakar I, Shahid N, et al. 2018. Microbial contamination; A survey of microbial contamination of toothbrushes among general population of Karachi. The Professional Medical Journal, 25(11): 1785-1790. Doi:  10.29309/TPMJ/18.4456
    Melki S, Asmi AME, Gueddari M. 2019. Inferred industrial and agricultural activities impact on groundwater quality of Skhira Coastal Phreatic Aquifer in southeast of Tunisia (Mediterranean Region), Geofluids: 1-19. Doi: 10.1155/2019/9465498
    Mishra B. 2010. Agriculture, industry and mining in Orissa in the Post-Liberalization Era: An inter-district and inter-state panel analysis. Economic & Political Weekly, 15: 49-68. Doi: https://www.jstor.org/stable/27807027
    Mishra K, Nayak PL. 2014. A study of water pollution in two major rivers in Odisha-Mahanadi and Brahmani. Middle-East Journal of Scientific Research, 22(12): 1760-1770. Doi:  10.5829/idosi.mejsr.2014.22.12.21634
    Murali RM, Shrivastava D, Vethamony P. 2009. Monitoring shoreline environment of Paradip, east coast of India using remote sensing. Current Science, 97(1): 79-84. http://agris.fao.org/agris-search/search.do?recordID=AV20120145001
    Pal P, Sarangi DK. 2018. Impact of biomedical waste on Cuttack City. Current World Envi-ronment, 13(2): 259-269. Doi: http://dx.doi.org/ 10.12944/CWE.13.2.11
    Palei NC, Rath BP, Pradhan SD, et al. 2014. The water birds of paradeep phosphate limited (PPL) campus of Jagatsinghpur District in Odisha, India. World Journal of Zoology, 9(3): 208-213. Doi:  10.5829/idosi.wjz.2014.9.3.8552.
    Panda PK, Panda RB, Dash PK. 2018. The river water pollution in India & abroad-A critical review to study the relationship among different physico-chemical parameters. American Journal of Water Resources, 6(1): 25-38. Doi:  10.12691/ajwr-6-1-4
    Panigrahi AK, Pattnaik S. 2019. A Review on consequences of pollution of some Indian major rivers and their remedial measures. International Journal of Research & Review, 6(7): 373-383. Doi: http://www.inrein.com/10.4444/ijrr.1002/1233.html
    Prusty R, Biswal T. 2017. Water quality assessment of Taladanda canal in the command area of Cuttack City. International Journal of Advances in Agricultural Science and Tech-nology, 4(8): 40-48.
    Rai S, Kaur A, Sethi GK, et al. 2019. Association of fecal micro flora with bronchiolitis. The Indian Journal of Pediatric, 86(8): 757. Doi: https://doi.org/ 10.1007/s12098-019-02929-0
    Samantray P, Mishra BK, Panda CR, et al. 2009. Assessment of water quality index in Ma-hanadi and Atharbanki River and Taladanda canal in Paradip area, India. Journal of Human Ecology, 26(3):153-161. Doi: https://doi.org/ 10.1080/09709274.2009.11906177
    Samantray P, Pati RC, Panda CR, et al. 2011. The problem of ground water pollution: A case study from Paradip Port City, India. Asian Journal of Research in Chemistry, 4(6): 957-959. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=109498660&site=ehost-live
    Sentas A, Psilovikos A, Psilovikos T, et al. 2016. Statistical analysis and assessment of water quality parameters in Pagoneri, River Nestos. European Water, 55: 115-126. http://www.researchgate.net/publication/320869295_Statistical_Analysis_and_Assessment_of_Water_Quality_Parameters_in_Pagoneri_River_Nestos
    Shukla DP, Vaghela KB, Jain NK. 2017. Assess-ment of physico-chemical and bacteriological water quality parameters: A review. Interna-tional Journal of Pharmacy and Integrated Life Sciences, 5(2): 1-17. http://www.researchgate.net/publication/314951607_Assessment_of_Physico-chemical_and_Bacteriological_Water_Quality_Parameters_A_Review
  • [1] Fu-ning Lan, Yi Zhao, Jun Li, Xiu-qun Zhu2024:  Health risk assessment of heavy metal pollution in groundwater of a karst basin, SW China, Journal of Groundwater Science and Engineering, 12, 49-61. doi: 10.26599/JGSE.2024.9280005
    [2] Masoud H Hamed, Rebwar N Dara, Marios C Kirlas2024:  Groundwater vulnerability assessment using a GIS-based DRASTIC method in the Erbil Dumpsite area (Kani Qirzhala), Central Erbil Basin, North Iraq, Journal of Groundwater Science and Engineering, 12, 16-33. doi: 10.26599/JGSE.2024.9280003
    [3] Chun-xiao Wang, Yong Qian, Zhao-ji Zhang, Chen Yue, Chun-yan Guo, Xiang-xiang Cui2023:  Current status and prospects of research on 1,4-dioxane pollution and treatment technologies in the water environment, Journal of Groundwater Science and Engineering, 11, 158-170. doi: 10.26599/JGSE.2023.9280014
    [4] Kirlas Marios C2021:  Assessment of porous aquifer hydrogeological parameters using automated groundwater level measurements in Greece, Journal of Groundwater Science and Engineering, 9, 269-278. doi: 10.19637/j.cnki.2305-7068.2021.04.001
    [5] Ahmed Mohammad Tofayal, Monir Minhaj Uddin, Hasan Md Yeasir, Rahman Md Mominur, Rifat Md Shamiul Islam, Islam Md Naim, Khan Abu Shamim, Rahman Md Mizanur, Islam Md Shajidul2020:  Hydro-geochemical evaluation of groundwater with studies on water quality index and suitability for drinking in Sagardari, Jashore, Journal of Groundwater Science and Engineering, 8, 259-273. doi: 10.19637/j.cnki.2305-7068.2020.03.006
    [6] Negar Fathi, Mohammad Bagher Rahnama, Mohammad Zounemat Kermani2020:  Spatial analysis of groundwater quality for drinking purpose in Sirjan Plain, Iran by fuzzy logic in GIS, Journal of Groundwater Science and Engineering, 8, 67-78. doi: 10.19637/j.cnki.2305-7068.2020.01.007
    [7] Bahrami Mehdi, Khaksar Elmira, Khaksar Elahe2020:  Spatial variation assessment of groundwater quality using multivariate statistical analysis(Case Study: Fasa Plain, Iran), Journal of Groundwater Science and Engineering, 8, 230-243. doi: 10.19637/j.cnki.2305-7068.2020.03.004
    [8] LI Yang, KANG Feng-Xin, ZOU An-de2019:  Isotope analysis of nitrate pollution sources in groundwater of Dong’e geohydrological unit, Journal of Groundwater Science and Engineering, 7, 145-154. doi: 10.19637/j.cnki.2305-7068.2019.02.005
    [9] HU Zun-fang, KANG Feng-xin, ZOU An-de, YU Lin-song, LI Yang, TIAN Tong-liang, KANG Gui-ling2019:  Evolution trend of the water quality in Dongping Lake after South-North Water Transfer Project in China, Journal of Groundwater Science and Engineering, 7, 333-339. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.004
    [10] T K G P Ranasinghe, R U K Piyadasa2019:  Visualizing the spatial water quality of Bentota, Sri Lanka in the presence of seawater intrusion, Journal of Groundwater Science and Engineering, 7, 340-353. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.005
    [11] WU Ting-wen, WANG Li-huan, WANG Lin-shu, KONG Qing-xuan2018:  Evaluation of groundwater quality and pollution in Daqing Oilfield, Journal of Groundwater Science and Engineering, 6, 40-48. doi: 10.19637/j.cnki.2305-7068.2018.01.005
    [12] Alhassan H Ismai, Muntasir A Shareef, Wesam Mahmood2018:  Hydrochemical characterization of groundwater in Balad district, Salah Al-Din Governorate, Iraq, Journal of Groundwater Science and Engineering, 6, 306-322. doi: 10.19637/j.cnki.2305-7068.2018.04.006
    [13] JIANG Ti-sheng, QU Ci-xiao, WANG Ming-yu, SUN Yan-wei, HU Bo, CHU Jun-yao2017:  Analysis on temporal and spatial variations of groundwater hydrochemical characteristics in the past decade in southern plain of Beijing, China, Journal of Groundwater Science and Engineering, 5, 235-248.
    [14] LIU Shu-yuan, WANG Hong-qi2016:  Dynamic assessment of pollution risk of groundwater source area in Northern China, Journal of Groundwater Science and Engineering, 4, 333-343.
    [15] DAI Wen-Bin, ZHANG Wei-Jun, COWEN Taha2015:  An analysis of River Derwent pollution and its impacts, Journal of Groundwater Science and Engineering, 3, 39-44.
    [16] YANG Li-zhi, LIU Chun-hua2015:  Study on the characteristics and causes of carbon tetrachloride pollution of karst water in eastern suburbs of Jinan, Journal of Groundwater Science and Engineering, 3, 331-341.
    [17] LIU Jun, CHENG Jian-mei, JIANG Fang-yuan2015:  Methodological study of coastal geological hazard assessment based on GIS, Journal of Groundwater Science and Engineering, 3, 77-85.
    [18] Kang-qin HAN, Ri-sheng DUAN, Liang-liang JIA, Yuan-yuan DUAN, Min-ying FENG2014:  Analysis on Present Status of Underground Water Pollution in Shijiazhuang and Its Prevention Measures, Journal of Groundwater Science and Engineering, 2, 44-48.
    [19] B.T. Hiller, N. Jadamba2013:  Groundwater Use in the Selenge River Basin, Mongolia, Journal of Groundwater Science and Engineering, 1, 11-32.
    [20] Song Bo, Liu Changli, Zhang Yun, Hou Hongbing, Pei Lixin, Yang Liu2013:  Urban Waste Disposal and Its Impact on Groundwater Pollution in China, Journal of Groundwater Science and Engineering, 1, 88-95.
  • 加载中
图(5) / 表ll (6)
计量
  • 文章访问数:  988
  • HTML全文浏览量:  388
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-15
  • 录用日期:  2020-10-10
  • 刊出日期:  2020-12-28

目录

    /

    返回文章
    返回