• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Comparative analysis of bacterial contamination in tap and groundwater: A case study on water quality of Quetta City, an arid zone in Pakistan

Tanzeel Khan Muhammad Akhtar Malik Gohram Malghani Rabia Akhtar

Tanzeel K, Muhammad AM, Gohram M, et al. 2022. Comparative analysis of bacterial contamination in tap and groundwater: A case study on water quality of Quetta City, an arid zone in Pakistan. Journal of Groundwater Science and Engineering, 10(2): 153-165 doi:  10.19637/j.cnki.2305-7068.2022.02.005
Citation: Tanzeel K, Muhammad AM, Gohram M, et al. 2022. Comparative analysis of bacterial contamination in tap and groundwater: A case study on water quality of Quetta City, an arid zone in Pakistan. Journal of Groundwater Science and Engineering, 10(2): 153-165 doi:  10.19637/j.cnki.2305-7068.2022.02.005

doi: 10.19637/j.cnki.2305-7068.2022.02.005

Comparative analysis of bacterial contamination in tap and groundwater: A case study on water quality of Quetta City, an arid zone in Pakistan

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Map of study area with sampling points

    Figure  2.  Population Census of Quetta District Source: Pakistan Bureau of statistics

    Figure  3.  Bacterial contamination in GW in each town

    Figure  4.  Bacterial contamination in TW samples in each town

    Figure  5.  Histogram of all the variables in TW

    Figure  6.  Histogram of all the variable in GW

    Figure  7.  Comparative analysis of Total Coliform contamination in TW and GW

    Figure  8.  Summary of questionnaires results

    Table  1.   Bacterial contamination in TW and GW

    Sr#.Name of schemeTWGW
    E.ColiColiformTotal ColiformE.ColiColiformTotal Coliform
    CFU/mLCFU/mLCFU/mLCFU/mLCFU/mLCFU/mL
    0/100 mL0/100 mL0/100 mL0/100 mL0/100 mL0/100 mL
    1 Brewery town 0 12 12 0 0 0
    2 0 8 8 0 0 0
    3 0 0 0 0 0 0
    4 0 0 0 0 0 0
    5 Jinnah town 0 12 12 0 0 0
    6 0 0 0 0 0 0
    7 0 8 8 0 0 0
    8 12 26 38 0 0 0
    9 0 0 0 0 0 0
    10 Shahbaz town 0 0 0 0 0 0
    11 0 16 16 0 4 4
    12 0 0 0 0 3 3
    13 8 26 34 0 0 0
    14 0 0 0 0 0 0
    15 Quetta main city 0 14 14 0 0 0
    16 0 12 12 0 7 7
    17 0 6 6 0 0 0
    18 0 14 14 0 0 0
    19 0 12 12 0 4 4
    20 14 18 32 0 0 0
    21 0 8 8 0 0 0
    22 0 6 6 0 0 0
    23 0 4 4 0 0 0
    24 Satallite town 0 0 0 0 6 6
    25 0 0 0 0 0 0
    26 0 16 16 0 0 0
    27 Chiltan town 0 0 0 0 0 0
    28 0 0 0 0 2 2
    29 0 0 0 0 0 0
    30 0 0 0 0 0 0
    31 0 0 0 0 0 0
    下载: 导出CSV

    Table  2.   Physiochemical parameters and microbes in TW

    TWGW
    MeanStd. DeviationMeanStd. Deviation
    pH 7.89 0.24 7.37 0.20
    EC (µS/cm) 718.71 314.39 580.96 132.56
    Turbidity (NTU) 5.15 8.30 2.48 0.58
    TDS (mg/L) 439.45 194.58 474.61 151.63
    E.coli 1.10 3.49 1.64 1.53
    Coliform 7.03 7.96 1.64 1.53
    Total coliform 8.13 10.54 7.37 0.20
    下载: 导出CSV

    Table  3.   Pearson Correlation of physiochemical parameters with Total Coliform in TW

    pHECTurbidityTDSE.coliColiformTotal coliform
    pH Pearson correlation 1 −0.099 −0.079 −0.102 −0.129 −0.080 −0.103
    Sig. (2- tailed) 0.596 0.672 0.584 0.487 0.669 0.580
    N 31 31 31 31 31 31 31
    EC Pearson correlation −0.099 1 0.101 0.997** 0.438* 0.360* 0.417*
    Sig. (2- tailed) 0.596 0.589 0.000 0.014 0.047 0.020
    N 31 31 31 31 31 31 31
    Turbidity Pearson correlation −0.079 0.101 1 0.110 0.821** 0.591** 0.718**
    Sig. (2- tailed) 0.672 0.589 0.556 0.000 0.000 0.000
    N 31 31 31 31 31 31 31
    TDS Pearson correlation −0.102 0.997** 0.110 1 0.428* 0.346 0.403*
    Sig. (2- tailed) 0.584 0.000 0.556 0.016 0.057 0.025
    N 31 31 31 31 31 31 31
    E.coli Pearson correlation −0.129 0.438* 0.821** 0.428* 1 638** 0.813**
    Sig. (2- tailed) 0.487 0.014 0.000 0.016 0.000 0.000
    N 31 31 31 31 31 31 31
    Coliform Pearson correlation −0.080 0.360* 0.591** 0.346 0.638** 1 0.967**
    Sig. (2- tailed) 0.669 0.047 0.000 0.057 0.000 0.000
    N 31 31 31 31 31 31 31
    Total coliform Pearson correlation −0.103 0.417* 0.718** 0.403* 0.813** 0.967** 1
    Sig. (2- tailed) 0.580 0.020 0.000 0.025 0.000 0.000
    N 31 31 31 31 31 31 31
    Notes: **Correlation is significant at the 0.01 level (2-tailed)
    *Correlation is significant at the 0.05 level (2-tailed)
    下载: 导出CSV

    Table  4.   Physiochemical Water Quality Analysis of TW and GW

    Sr#.Name of schemeTWGW
    pHECTurbidityTDSpHECTurbidityTDS
    -µS/cmNTUmg/L-µS/cmNTUmg/L
    6.5–8.5-510006.5–8.5-51000
    1 Brewery Town 8.2 730 2.4 443 7.62 1178 3.1 753
    2 7.8 726 1.9 442 7.68 575 2.6 666
    3 8.0 787 2.1 482 7.54 685 1.8 423
    4 7.82 520 2.1 309 7.32 433 3.1 565
    5 Jinnah Town 7.5 1343 2.6 872 7.5 522 2.9 675
    6 7.9 998 3.6 600 7.39 674 1.8 431
    7 7.8 890 2 531 7.29 528 2.6 484
    8 7.8 1 942 8.9 1159 7.45 573 3.5 314
    9 7.99 896 2.6 574 7.32 493 2.1 566
    10 Shahbaz Town 7.6 543 1.6 327 7.56 555 1.6 287
    11 7.8 777 14.6 469 7.26 498 2.6 318
    12 7.5 500 1.2 296 7.24 500 1.8 289
    13 7.6 562 26.8 333 7.35 575 2.3 415
    14 8.1 592 1.6 351 7.65 587 2.6 498
    15 Quetta Main city 8.2 435 4.2 262 7.15 512 1.8 555
    16 8.0 940 1.8 564 7.2 422 1.8 269
    17 7.9 686 1.9 413 7.14 485 3.1 384
    18 7.6 534 2.2 324 7.25 512 2.9 396
    19 7.9 603 5.6 367 7.34 576 2.6 483
    20 7.9 792 40.6 507 7.23 587 3.5 666
    21 8.26 460 7.6 286 7.12 432 2.6 789
    22 8.1 405 2.2 239 7.16 522 1.8 724
    23 7.9 450 1.4 266 7.12 595 3.5 381
    24 Satallite Town 8.2 1025 4.6 656 7.38 678 2.1 277
    25 7.9 731 3 454 7.54 674 1.6 532
    26 8.1 625 2.6 390 7.12 566 1.8 354
    27 Chiltan Town 8.1 840 1.6 509 7.14 589 2.3 655
    28 7.8 410 2 248 7.81 651 2.6 417
    29 8.2 424 1.4 257 7.65 655 3.1 345
    30 8.0 542 1.4 333 7.72 623 2.9 389
    31 7.2 572 1.6 360 7.38 555 2.6 413
    下载: 导出CSV

    Table  5.   Pearson Correlation of physiochemical parameters with total coliform in GW

    pHECturbidityTDSColiformTotal coliform
    pH Pearson Correlation 1 0.487** 0.094 −0.051 −0.139 −0.139
    Sig. (2-tailed) 0.005 0.615 0.787 0.455 0.455
    N 31 31 31 31 31 31
    EC Pearson Correlation 0.487** 1 0.117 0.182 −0.135 −0.135
    Sig. (2-tailed) 0.005 0.530 0.327 0.470 0.470
    N 31 31 31 31 31 31
    Turbidity Pearson Correlation 0.094 0.117 1 0.148 −0.241 −0.241
    Sig. (2-tailed) 0.615 0.530 0.427 0.191 0.191
    N 31 31 31 31 31 31
    TDS Pearson Correlation −0.051 0.182 0.148 1 −0.442* −0.442*
    Sig. (2-tailed) 0.787 0.327 0.427 0.013 0.013
    N 31 31 31 31 31 31
    Coliform Pearson Correlation −0.139 −0.135 −0.241 −0.442* 1 1.000**
    Sig. (2-tailed) 0.455 0.470 0.191 0.013 0.000
    N 31 31 31 31 31 31
    Total coliform Pearson Correlation −0.139 −0.135 −0.241 −0.442* 1.000** 1
    Sig. (2-tailed) 0.455 0.470 0.191 0.013 0.000
    N 31 31 31 31 31 31
    Notes: **. Correlation is significant at the 0.01 level (2-tailed).
    *. Correlation is significant at the 0.05 level (2-tailed).
    下载: 导出CSV
  • Aftab SM, Siddiqui RH, Farooqui MA. 2018. Strategies to manage aquifer recharge in Balochistan, Pakistan: An overview. In IOP Conference Series: Materials Science and Engineering, 414(1): 012023. IOP Publishing.
    Ahmed J, Wong LP, Chua YP, et al. 2020. Quantitative microbial risk assessment of drinking water quality to predict the risk of waterborne diseases in primary-school children. International Journal of Environmental Research and Public Health, 17(8): 2774. doi:  10.3390/ijerph17082774
    Akhtar MM, Mohammad AD, Ehsan M, Akhtar R, ur Rehman J, Manzoor Z. 2021. Water resources of Balochistan, Pakistan — A review. Arabian Journal of Geosciences, 14(4): 1-6. doi:  10.1007/s12517-021-06940-8
    Alam K. 2010. Evaluation of aquifer system in Quetta valley through geophysical methods and groundwater flow modeling. Ph.D thesis, University of the Punjab, Lahore-Pakistan.
    Alam K, Ahmad N. 2014. Determination of aquifer geometry through geophysical methods: A case study from Quetta Valley, Pakistan. Acta Geophysica, 62(1): 142-163. doi:  10.2478/s11600-013-0171-8
    Azizullah A, Khattak MNK, Richter P, et al. 2011. Water pollution in Pakistan and its impact on public health — A review. Environment International, 37(2): 479-497. doi:  10.1016/j.envint.2010.10.007
    Craun GF, Calderon RL. 2006. Workshop summary: Estimating waterborne disease risks in the United States. Journal of Water and Health, 4(S2): 241-253. doi:  10.2166/wh.2006.025
    Daud MK, Nafees M, Ali S, et al. 2017. Drinking water quality status and contamination in Pakistan. Biomed Research International, 2017: 7908183.
    Dawood F, Akhtar MM, Ehsan M. 2021. Evaluating urbanization impact on stressed aquifer of Quetta Valley, Pakistan. Desalination and Water Treatment, 222: 103-113.
    Din M, Ahmad Z, Aleem A. et al. 2014. Pathogens from drinking water; Isolation and antibiogram of pathogenic organisms from drinking water in Quetta city. Professional Medical Journal, 21(4): 760-765.
    Durrani IH, Adnan S, Ahmad M. et al. 2018. Observed long-term climatic variability and its impacts on the ground water level of Quetta alluvial. Iranian Journal of Science and Technology, Transactions A: Science, 42(2): 589-600.
    Ferrer N, Folch A, Masó G, et al. 2020. What are the main factors influencing the presence of faecal bacteria pollution in groundwater systems in developing countries. Journal of Contaminant Hydrology, 228: 103556. doi:  10.1016/j.jconhyd.2019.103556
    Ghani A, Chaudary ZA, Rehman H, et al. 2019. Assessment of sustainable groundwater extraction rate for Quetta city using MODFLOW. Pakistan Journal of Engineering and Applied Sciences, 24. Corpus ID: 135115506.
    Ilyas SZ, Khattak AI, Nasir SM, et al. 2010. Air pollution assessment in urban areas and its impact on human health in the city of Quetta, Pakistan. Clean Technologies and Environmental Policy, 12(3): 291-299. doi:  10.1007/s10098-009-0209-4
    Jang WS, Engel B, Harbor J, et al. 2017. Aquifer vulnerability assessment for sustainable groundwater management using DRASTIC. Water, 9(10): 792. doi:  10.3390/w9100792
    Kamran HW, Omran A. 2020. Water contamination and health hazards in Pakistan: An overview of the current scenario and contemporary challenges. Sustaining our Environment for Better Future: 75-84. doi:  10.1007/978-981-13-7158-5
    Khan M, Abro SH, Taj MK, et al. 2016. Bacterial contamination of drinking water used at dairy farms in Quetta, Balochistan. Pure and Applied Biology, 5(4): 1. doi:  10.19045/bspab.2016.50089
    Knappett PS, mckay LD, Layton A, et al. 2012. Unsealed tubewells lead to increased fecal contamination of drinking water. Journal of Water and Health, 10(4): 565-578. doi:  10.2166/wh.2012.102
    Liu K, Luo X, Jiao JJ, et al. 2021. Gene abundances of AOA, AOB, and anammox controlled by groundwater chemistry of the Pearl River Delta, China. China Geology, 4: 463-475. doi:  10.31035/cg2021054
    Muhammad AM, Zhonghua T, Sissou Z, et al. 2016. Analysis of geological structure and anthropological factors affecting arsenic distribution in the Lahore aquifer, Pakistan. Hydrogeology Journal, 24(7): 1891-1904. doi:  10.1007/s10040-016-1453-4
    Ngwenya N, Ncube E J, Parsons J. 2013. Recent advances in drinking water disinfection: Successes and challenges. Reviews of Environmental Contamination and Toxicology: 111-170. doi:  10.1007/978-1-4614-4717-7_4
    Oyelakin JF, Ahmad SM, Aiyelokun OO, et al. 2020. Water quality assessment of groundwater in selected potable water sources for household use in Ibadan, Southwest, Nigeria. International Journal of Energy and Water Resources: 1-8. doi:  10.1007/s42108-020-00090-5
    Pandey PK, Kass PH, Soupir ML, et al. 2014. Contamination of water resources by pathogenic bacteria. Amb Express, 4(1): 1-16. doi:  10.1186/s13568-014-0051-x
    PSO Pakistan Buraue of Statistics. 2020. District at a glance Quetta, in 2020, May 11.
    WHO. 1993. World Health Organization. Guidelines for drinking-water quality. 1: Recommendations, second Edition. World Health Organization.
    WHO. 2008. Guidelines for Drinking water Quality, incorporating the first and second addenda: Third edition, 1: Recommendations.
  • [1] Allia Zineb, Lalaoui Meriem2024:  Formation mechanism of hydrochemical and quality evaluation of shallow groundwater in the Upper Kebir sub-basin, Northeast Algeria, Journal of Groundwater Science and Engineering, 12, 78-91. doi: 10.26599/JGSE.2024.9280007
    [2] Liu Ya-ci, Zhang Zhao-ji, Zhao Xin-yi, Wen Meng-tuo, Cao Sheng-wei, Li Ya-song2021:  Arsenic contamination caused by roxarsone transformation with spatiotemporal variation of microbial community structure in a column experiment, Journal of Groundwater Science and Engineering, 9, 304-316. doi: 10.19637/j.cnki.2305-7068.2021.04.004
    [3] Terrazas-Salvatierra Jhim, Munoz-Vásquez Galo, Romero-Jaldin Ana2020:  Migration of total chromium and chloride anion in the Rocha River used for estimating degradation of agricultural soil quality at the Thiu Rancho zone, Journal of Groundwater Science and Engineering, 8, 223-229. doi: 10.19637/j.cnki.2305-7068.2020.03.003
    [4] Abdelhakim LAHJOUJ, Abdellah EL HMAIDI, Karima BOUHAFA2020:  Spatial and statistical assessment of nitrate contamination in groundwater: Case of Sais Basin, Morocco, Journal of Groundwater Science and Engineering, 8, 143-157. doi: 10.19637/j.cnki.2305-7068.2020.02.006
    [5] Bahrami Mehdi, Khaksar Elmira, Khaksar Elahe2020:  Spatial variation assessment of groundwater quality using multivariate statistical analysis(Case Study: Fasa Plain, Iran), Journal of Groundwater Science and Engineering, 8, 230-243. doi: 10.19637/j.cnki.2305-7068.2020.03.004
    [6] Negar Fathi, Mohammad Bagher Rahnama, Mohammad Zounemat Kermani2020:  Spatial analysis of groundwater quality for drinking purpose in Sirjan Plain, Iran by fuzzy logic in GIS, Journal of Groundwater Science and Engineering, 8, 67-78. doi: 10.19637/j.cnki.2305-7068.2020.01.007
    [7] Ahmed Mohammad Tofayal, Monir Minhaj Uddin, Hasan Md Yeasir, Rahman Md Mominur, Rifat Md Shamiul Islam, Islam Md Naim, Khan Abu Shamim, Rahman Md Mizanur, Islam Md Shajidul2020:  Hydro-geochemical evaluation of groundwater with studies on water quality index and suitability for drinking in Sagardari, Jashore, Journal of Groundwater Science and Engineering, 8, 259-273. doi: 10.19637/j.cnki.2305-7068.2020.03.006
    [8] HU Zun-fang, KANG Feng-xin, ZOU An-de, YU Lin-song, LI Yang, TIAN Tong-liang, KANG Gui-ling2019:  Evolution trend of the water quality in Dongping Lake after South-North Water Transfer Project in China, Journal of Groundwater Science and Engineering, 7, 333-339. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.004
    [9] T K G P Ranasinghe, R U K Piyadasa2019:  Visualizing the spatial water quality of Bentota, Sri Lanka in the presence of seawater intrusion, Journal of Groundwater Science and Engineering, 7, 340-353. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.005
    [10] WU Ting-wen, WANG Li-huan, WANG Lin-shu, KONG Qing-xuan2018:  Evaluation of groundwater quality and pollution in Daqing Oilfield, Journal of Groundwater Science and Engineering, 6, 40-48. doi: 10.19637/j.cnki.2305-7068.2018.01.005
    [11] WU Ting-wen, WANG Li-huan, YANG Xiang-kui2017:  Evaluation of groundwater potential and eco-geological environment quality in Sanjiang Plain of Heilongjiang Province, Journal of Groundwater Science and Engineering, 5, 193-201.
    [12] TAO Hong, ZHENG Miao-miao, FAN Li-min, LI Wen-li, DING Jia, LI Hui, HE Xu-bo, TAO Fu-ping2017:  Research on quality changes and influencing factors of groundwater in the Guanzhong Basin, Journal of Groundwater Science and Engineering, 5, 296-302.
    [13] ZHANG Chuan-mian, GUO Xiao-niu, Richard Henry, James Dendy2015:  Groundwater modelling to help diagnose contamination problems, Journal of Groundwater Science and Engineering, 3, 285-294.
    [14] YI Qing, GE Li-qiang, CHENG Yan-pei, DONG Hua, LIU Kun, ZHANG Jian-kang, YUE Chen2015:  Compilation of Groundwater Quality Map and study of hydrogeochemical characteristics of groundwater in Asia, Journal of Groundwater Science and Engineering, 3, 176-185.
    [15] FEI Yu-hong, ZHANG Zhao-ji, LI Ya-song, GUO Chun-yan, TIAN Xia2015:  Quality evaluation of groundwater in the North China Plain, Journal of Groundwater Science and Engineering, 3, 306-315.
    [16] HAN Mei, JIA Na, LI Ke, ZHAO Guo-xing, LIU Bing-bing, LIU Sheng-hua, LIU Jie2014:  Analysis of bromate and bromide in drinking water by ion chromatography-inductively coupled plasma mass spectrometry, Journal of Groundwater Science and Engineering, 2, 48-53.
    [17] Zhao Wang, Jiansheng Shi, Zhaoji Zhang, Yuhong Fei2013:  Organic Contamination of Soil and Goundwater in the Piedimont Plain of the Taihang Mountains, Journal of Groundwater Science and Engineering, 1, 74-81.
    [18] Zhao-xian Zheng, Xiao-si Su2013:  Risk Assessment on Organic Contamination of Shallow Groundwater of an Oilfield in Northeast China, Journal of Groundwater Science and Engineering, 1, 75-82.
    [19] Meng-jie Wu, Hui-zhen Hen2013:  Brief Talk of Groundwater Resources in Role of Rural Drinking Water Safety and Construction of City Emergency Water Source, Journal of Groundwater Science and Engineering, 1, 40-52.
    [20] Aizhong Ding, Lirong Cheng, Steve Thornton, Wei Huang, David Lerner2013:  Groundwater quality Management in China, Journal of Groundwater Science and Engineering, 1, 54-59.
  • 加载中
图(8) / 表ll (5)
计量
  • 文章访问数:  781
  • HTML全文浏览量:  300
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-13
  • 录用日期:  2022-04-05
  • 刊出日期:  2022-06-20

目录

    /

    返回文章
    返回