• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录


尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!


Influence of underground space development mode on the groundwater flow field in Xiong’an new area

Yi-hang Gao Jun-hui Shen Lin Chen Xiao Li Shuang Jin Zhen Ma Qing-hua Meng

Gao YH, Shen JH, Chen L, et al. 2023. Influence of underground space development mode on the groundwater flow field in Xiong’an new area. Journal of Groundwater Science and Engineering, 11(1): 68-80 doi:  10.26599/JGSE.2023.9280007
Citation: Gao YH, Shen JH, Chen L, et al. 2023. Influence of underground space development mode on the groundwater flow field in Xiong’an new area. Journal of Groundwater Science and Engineering, 11(1): 68-80 doi:  10.26599/JGSE.2023.9280007

doi: 10.26599/JGSE.2023.9280007

Influence of underground space development mode on the groundwater flow field in Xiong’an new area

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
  • Figure  1.  Geomorphological map and typical profile of the study area

    Figure  2.  Three-dimensional structure model of aquifer in the study area

    Figure  3.  Comparison of goodness of fit between the measured and calculated values

    Figure  4.  Simulated groundwater levels prior to the development of the underground space

    Figure  5.  a) Simulated groundwater levels in the “point” underground space development and b) profile of the groundwater level change in the “point” underground space (N-N Section)

    Figure  6.  Simulated groundwater levels in the a) “line” concurrent and c) “line” interception underground space development; Profile of the groundwater level change of the b) “line” concurrent and d) “line” interception underground space development (N-N Section).

    Figure  7.  a) Simulated groundwater levels in the “surface” underground space development and b) profile of groundwater level variation in the “surface” underground space development (N-N Section).

    Table  1.   Initial hydraulic properties

    No.Stratum and lithologyLayerHorizontal hydraulic conductivity (m/d)Vertical hydraulic conductivity (m/d)Specific yield
    1LandfillUnsaturated zone8.35e-053.77e-050.027 5
    2Alluvial pluvial soilUnsaturated zone2.3e-037.4e-030.027 5
    3Alluvial lacustrine soilUnsaturated zone5.1e-037.6e-030.027 5
    4Clay + siltUnsaturated zone3.0e-035.9e-030.037 5
    5Clayey sandUnsaturated zone1.0e-041.6e-040.037 5
    6Find sand + siltUnconfined aquifer3.163.160.04
    7Clay + siltLow-permeability aquifer9.5e-037.30e-030.037 5
    8Find sand + siltConfined aquifer0.9070.9070.047 5
    9Clayey soilImpermeable layer1.0e-041.6e-040.027 5
    10Find sand + Silt + Medium sandConfined aquifer0.777 60.777 60.07
    11Clayey soilImpermeable layer2.8e-033.9e-040.027 5
    12Clayey soilImpermeable layer2.1e-043.2e-040.027 5
    13Find sand + Silt + Medium sandConfined aquifer2.5922.5920.095
    14Clayey soilImpermeable layer1.5e-023.7e-030.027 5
    15Find sand + Medium sandConfined aquifer2.5922.5920.095
    16Clayey soilImpermeable layer8.5e-051.6e-040.027 5
    17Find sand + Medium sandConfined aquifer2.5922.5920.095
    18Clayey soilImpermeable layer1.9e-043.6e-040.027 5
    下载: 导出CSV

    Table  2.   List of data of the influences on groundwater exerted by different modes of underground space development

    Development modesIncreasing amplitude (m)Average (m)Decreasing amplitude (m)Average (m)
    OverallN-N SectionN-N SectionOverallN-N SectionN-N Section
    Development modes Funnel extent (km) Decreasing amplitude in the center (m) Hydraulic gradient Extent of influence (km)
    N-N Section Overall N-N Section Overall N-N Section N-N Section
    Point 3.40 3.92 3.34 5.45 3.03 4.00
    Line-down-flow 3.00 3.13 2.84 4.81 2.01 7.00
    Line-cross-closure 5.50 5.04 4.75 8.33 3.92 5.80
    Surface 7.70 >8 6.96 13.46 12.82 >8
    下载: 导出CSV
  • Attard G, Rossier Y, Eisenlohr L. 2017. Underground structures increasing the intrinsic vulnerability of urban groundwater: Sensitivity analysis and development of an empirical law based on a groundwater age modelling approach. Journal of Hydrology, 552: 460−473. DOI: 10.1016/j.jhydrol.2017.07.013.
    Attard G, Winiarski T, Rossier Y, et al. 2016. Review: Impact of underground structures on the flow of urban groundwater. Hydrogeology Journal, 24: 5−19. DOI: 10.1007/s10040-015-1317-3.
    Bobylev N. 2009. Mainstreaming sustainable development into a city’s Master plan: A case of Urban Underground Space use. Land Use Policy, 26: 1128−1137. DOI: 10.1016/j.landusepol.2009.02.003.
    Borgia A, Cattaneo L, Marconi D, et al. 2011. Using a MODFLOW grid, generated with GMS, to solve a transport problem with TOUGH2 in complex geological environments: The intertidal deposits of the Venetian Lagoon. Computers & Geosciences, 37: 783−790. DOI: 10.1016/j.cageo.2010.11.007.
    Chandrasekharan H, Tadi SG, Sarangi A, et al. 2005. Urbanization effects on the groundwater status of Delhi, India. In: Savic DA, Marino MA, Savenije HG, Bertoni JC, editors. Sustainable Water Management Solutions for Large Cities: 293, 294-298.
    Chen Y, Liu G, Huang X, et al. 2020. Development of a surrogate method of groundwater modeling using gated recurrent unit to improve the efficiency of parameter auto-calibration and global sensitivity analysis. Journal of Hydrology: 125726. DOI: 10.1016/j.jhydrol.2020.125726.
    Chen ZL, Chen JY, Liu H, et al. 2018. Present status and development trends of underground space in Chinese cities: Evaluation and analysis. Tunnelling and Underground Space Technology, 71: 253−270. (in Chinese) DOI: 10.1016/j.tust.2017.08.027.
    Chi G, Su X, Lyu H, et al. 2021. Simulating the shallow groundwater level response to artificial recharge and storage in the Plain area of the Daqing River Basin, China. Sustainability, 13: 5626. DOI: 10.3390/su13105626.
    Cui JQ, Broere W, Lin D. 2021. Underground space utilisation for urban renewal. Tunnelling and Underground Space Technology, 108: 103726. DOI: 10.1016/j.tust.2020.103726.
    De Caro M, Crosta GB, Previati A. 2020. Modelling the interference of underground structures with groundwater flow and remedial solutions in Milan. Engineering Geology, 272: 105652. DOI: 10.1016/j.enggeo.2020.105652.
    Dong L, Zhang J. 2021. Predicting polycyclic aromatic hydrocarbons in surface water by a multiscale feature extraction-based deep learning approach. Science of the Total Environment: 799. DOI: 10.1016/j.scitotenv.2021.149509.
    Foster S, Garduno H, Evans R, et al. 2004. Quaternary aquifer of the North China Plain — assessing and achieving groundwater resource sustainability. Hydrogeology Journal, 12: 81−93. DOI: 10.1007/s10040-003-0300-6.
    Han JC, Huang Y, Li Z, et al. 2016. Groundwater level prediction using a SOM-aided stepwise cluster inference model. Journal of Environmental Management, 182: 308−321. DOI: 10.1016/j.jenvman.2016.07.069.
    He DF, Shan SQ, Zhang YY, et al. 2018. 3-D geologic architecture of Xiong’an New Area: Constraints from seismic reflection data. Science China Earth Sciences, 48(9): 1207−1222.
    Hu ZH, Li XZ, Zhao XB, et al. 2008. Numerical analysis of factors affecting the range of heat transfer in earth surrounding three subways. Journal of China University of Mining and Technology, 18: 67−71. DOI: 10.1016/S1006-1266(08)60015-2.
    Li HP, Wickham JD, Bushley K, et al. 2020. New approaches in urban forestry to minimize invasive species impacts: The case of Xiongan New Area in China. Insects: 11. DOI: 10.3390/insects11050300.
    Li R, Zhang J, Krebs P. 2021. Consumption- and income-based sectoral emissions of Polycyclic Aromatic Hydrocarbons in China from 2002 to 2017. Environmental Science & Technology, 55: 3582−3592. DOI: 10.1021/acs.est.0c08119.
    Li X, Ye SY, Wei AH, et al. 2017. Modelling the response of shallow groundwater levels to combined climate and water-diversion scenarios in Beijing-Tianjin-Hebei Plain, China. Hydrogeology Journal, 25: 1733−1744. DOI: 10.1007/s10040-017-1574-4.
    Li XG, Yuan DJ. 2012. Response of a double-decked metro tunnel to shield driving of twin closely under-crossing tunnels. Tunnelling and Underground Space Technology, 28: 18−30. DOI: 10.1016/j.tust.2011.08.005.
    Liu FY, Cui JH, Chen LJ, et al. 2009. A view on geomorphologic zonalization of north china plain. Geography and Geo-Information Science, 25(4): 100−103.
    Ma Y, Li HQ, Zhang J, et al. 2020. Geophysical technology for underground space exploration in Xiongan New Area. Acta Geoscientica Sinica, 41(4): 535−542.
    Ma Z, Xia YB, Wang XD, et al. 2019. Integration of Engineering Geological Investigation Data and Construction of a 3D Geological Structure Model in the Xiong’an New Area. Geology in China, 46: 123−138.
    Makungo R, Odiyo JO. 2017. Estimating groundwater levels using system identification models in Nzhelele and Luvuvhu areas, Limpopo Province, South Africa. Physics and Chemistry of the Earth, Parts A/B/C, 100: 44−50. DOI: 10.1016/j.pce.2017.01.019.
    Melaku ND, Wang J. 2019. A modified SWAT module for estimating groundwater table at Lethbridge and Barons, Alberta, Canada. Journal of Hydrology, 575: 420−431. DOI: 10.1016/j.jhydrol.2019.05.052.
    Mengistu HA, Demlie MB, Abiye TA, et al. 2019. Conceptual hydrogeological and numerical groundwater flow modelling around the Moab Khutsong deep gold mine, South Africa. Groundwater for Sustainable Development, 9: 100266. DOI: 10.1016/j.gsd.2019.100266.
    Paris A, Teatini P, Venturini S, et al. 2010. Hydrological effects of bounding the Venice (Italy) industrial Harbor by a protection cutoff wall: Modeling study. Journal of Hydrologic Engineering, 15: 882−891. DOI: 10.1061/(ASCE)HE.1943-5584.0000258.
    Qiao YK, Peng FL. 2016. Master planning for underground space in Luoyang: A case of a representative historic city in China. Procedia Engineering, 165: 119−125. DOI: 10.1016/j.proeng.2016.11.743.
    Qin H, Cao G, Kristensen M, et al. 2013. Integrated hydrological modeling of the North China Plain and implications for sustainable water management. Hydrology and Earth System Sciences, 17: 3759−3778. DOI: 10.5194/hess-17-3759-2013.
    Ricci G, Enrione R, Eusebio A, et al. 2007. Numerical modelling of the interference between underground structures and aquifers in urban environment. The Turin subway — Line 1. Available on https://www.researchgate.net/publication/283166768.
    Rwanga S, Ndambuki J. 2020. Solving groundwater problems fraught with uncertain recharge: An application to Central Limpopo, South Africa. Groundwater for Sustainable Development, 10: 100305. DOI: 10.1016/j.gsd.2019.100305.
    Sathe SS, Mahanta C. 2019. Groundwater flow and arsenic contamination transport modeling for a multi aquifer terrain: Assessment and mitigation strategies. Journal of Environmental Management, 231: 166−181. DOI: 10.1016/j.jenvman.2018.08.057.
    Serrano-Juan A, Pujades E, Vázquez-Suñè E, et al. 2018. Integration of groundwater by-pass facilities in the bottom slab design for large underground structures. Tunnelling and Underground Space Technology, 71: 231−243. DOI: 10.1016/j.tust.2017.07.020.
    Singha S, Pasupuleti S, Singha SS, et al. 2020. Effectiveness of groundwater heavy metal pollution indices studies by deep-learning. Journal of Contaminant Hydrology, 235: 103718. DOI: 10.1016/j.gsd.2019.100245.
    Uddin MG, Moniruzzaman M, Quader MA, et al. 2018. Spatial variability in the distribution of trace metals in groundwater around the Rooppur nuclear power plant in Ishwardi, Bangladesh. Groundwater for Sustainable Development, 7: 220−231. DOI: 10.1016/j.gsd.2018.06.002.
    Wang C, Masoudi A, Wang M, et al. 2021. Land-use types shape soil microbial compositions under rapid urbanization in the Xiong’an New Area, China. Science of the Total Environment, 777: 145976. DOI: 10.1016/j.scitotenv.2021.145976.
    Wang GL, Liu ZM, Chen H, et al. 2010. Compilation of technical methods for investigation and evaluation of groundwater resources. Beijing, Geological Publishing House.
    Wu Y. 2003. Mechanism analysis of hazards caused by the interaction between groundwater and geo-environment. Environmental Geology, 44: 811−819. DOI: 10.1007/s00254-003-0819-9.
    Xie SL, Su YB, Xu WH, et al. 2019. The effect of habitat changes along the urbanization gradient for breeding birds: An example from the Xiong’an New Area. PeerJ, 7(10): 7961. DOI: 10.7717/peerj.7961.
    Xu HQ, Wang MY, Shi TT, et al. 2018. Prediction of ecological effects of potential population and impervious surface increases using a remote sensing based ecological index (RSEI). Ecological Indicators, 93: 730−740. DOI: 10.1016/j.ecolind.2018.05.055.
    Xu YS, Shen SL, Du YJ, et al. 2013. Modelling the cutoff behavior of underground structure in multi-aquifer-aquitard groundwater system. Natural Hazards, 66: 731-748. Available on https://link.springer.com/article/10.1007/s11069-012-0512-y
    Xu YS, Ma L, Shen SL, et al. 2012. Evaluation of land subsidence by considering underground structures that penetrate the aquifers of Shanghai, China. Hydrogeology Journal, 20: 1623−1634. DOI: 10.1007/s10040-012-0892-9.
    Yang W, Wang Z, Hua P, et al. 2021. Impact of green infrastructure on the mitigation of road-deposited sediment induced stormwater pollution. Science of the Total Environment: 770.
    Yang W, Zhang J. 2021. Assessing the performance of gray and green strategies for sustainable urban drainage system development: A multi-criteria decision-making analysis. Journal of Cleaner Production: 293. DOI: 10.1016/j.jclepro.2021.126191.
    Zhu X, Wang G, Wang X, et al. 2022. Hydrogeochemical and isotopic analyses of deep geothermal fluids in the Wumishan formation in Xiong’an New Area, China. Lithosphere: 2021.
    Zou WY, Yin SQ, Wang WT. 2021. Spatial interpolation of the extreme hourly precipitation at different return levels in the Haihe River basin. Journal of Hydrology, 598: 126273. DOI: 10.1016/j.jhydrol.2021.126273.
  • [1] Ying-nan Zhang, Yan-guang Liu, Kai Bian, Guo-qiang Zhou, Xin Wang, Mei-hua Wei2024:  Development status and prospect of underground thermal energy storage technology, Journal of Groundwater Science and Engineering, 12, 92-108. doi: 10.26599/JGSE.2024.9280008
    [2] Jun Zhang, Rong-zhe Hou, Kun Yu, Jia-qiu Dong, Li-he Yin2024:  Impact of water table on hierarchically nested groundwater flow system, Journal of Groundwater Science and Engineering, 12, 119-131. doi: 10.26599/JGSE.2024.9280010
    [3] Jwan Sabah Mustafa, Dana Khider Mawlood2024:  Developing three-dimensional groundwater flow modeling for the Erbil Basin using Groundwater Modeling System (GMS), Journal of Groundwater Science and Engineering, 12, 178-189. doi: 10.26599/JGSE.2024.9280014
    [4] Min Wang2023:  Opportunities and challenges for geological work in China in the new era, Journal of Groundwater Science and Engineering, 11, 1-3. doi: 10.26599/JGSE.2023.9280001
    [5] LI Ke, KANG Xiao-bing2019:  Optimizing dewatering design for a metro station on the Chengdu Metro Line 7, Journal of Groundwater Science and Engineering, 7, 155-164. doi: 10.19637/j.cnki.2305-7068.2019.02.006
    [6] LI Bo, LI Xue-mei2018:  Characteristics of karst groundwater system in the northern basin of Laiyuan Spring area, Journal of Groundwater Science and Engineering, 6, 261-269. doi: 10.19637/j.cnki.2305-7068.2018.04.002
    [7] LI Lu-lu, SU Chen, HAO Qi-chen, SHAO Jing-li2018:  Numerical simulation of response of groundwater flow system in inland basin to density changes, Journal of Groundwater Science and Engineering, 6, 7-17. doi: 10.19637/j.cnki.2305-7068.2018.01.002
    [8] WANG Shu-fang, LIU Jiu-rong, SUN Ying, LIU Shi-liang, GAO Xiao-rong, SUN Cai-xia, LI Hai-kui2018:  Study on the geothermal production and reinjection mode in Xiong County, Journal of Groundwater Science and Engineering, 6, 178-186. doi: 10.19637/j.cnki.2305-7068.2018.03.003
    [9] ZHOU Chang-song, ZOU Sheng-zhang, ZHU Dan-ni, XIE Hao, CHEN Hong-feng, WANG Jia2018:  Pollution pattern of underground river in karst area of the Southwest China, Journal of Groundwater Science and Engineering, 6, 71-83. doi: 10.19637/j.cnki.2305-7068.2018.02.001
    [10] TIAN Xia, FEI Yu-hong, ZHANG Zhao-ji, LI Ya-song, DUN Yu, GUO Chun-yan2017:  Analysis on hydrochemical characteristics of groundwater in strongly exploited area in Hutuo River Plain, Journal of Groundwater Science and Engineering, 5, 130-139.
    [11] LIU Shu-yuan, WANG Hong-qi2016:  Dynamic assessment of pollution risk of groundwater source area in Northern China, Journal of Groundwater Science and Engineering, 4, 333-343.
    [12] XIA Ri-yuan2016:  Groundwater resources in karst area in Southern China and sustainable utilization pattern, Journal of Groundwater Science and Engineering, 4, 301-309.
    [13] CHENG Tang-pei, LIU Xing-wei, SHAO Jing-Li, CUI Ya-li2016:  Review of the algebraic linear methods and parallel implementation in numerical simulation of groundwater flow, Journal of Groundwater Science and Engineering, 4, 12-17.
    [14] HAO Qi-chen, SHAO Jing-li, CUI Ya-li, ZHANG Qiu-lan2016:  Development of a new method for efficiently calculating of evaporation from the phreatic aquifer in variably saturated flow modeling, Journal of Groundwater Science and Engineering, 4, 26-34.
    [15] Kang-qin HAN, Ri-sheng DUAN, Liang-liang JIA, Yuan-yuan DUAN, Min-ying FENG2014:  Analysis on Present Status of Underground Water Pollution in Shijiazhuang and Its Prevention Measures, Journal of Groundwater Science and Engineering, 2, 44-48.
    [16] LIU Chang-Rong, HUANG Shuang-Bing, ZHANG Li-Zhong2014:  New Mine Geological Environment Impact Assessment Method, Journal of Groundwater Science and Engineering, 2, 88-96.
    [17] ZHANG Shao-cai, LIU Li-jun, LIU Zhi-gang, WANG Jun-jie, CUI Qiu-ping, WANG Juan2014:  Method for groundwater research in bedrock of mountainous area of Hebei, Journal of Groundwater Science and Engineering, 2, 97-104.
    [18] 2014:  The Experimental Investigations on Motion Features of Groundwater Flow near the Pumping Well, Journal of Groundwater Science and Engineering, 2, 1-11.
    [19] Zong-jun Gao, Yong-gui Liu2013:  Groundwater Flow Driven by Heat, Journal of Groundwater Science and Engineering, 1, 22-27.
    [20] Wang Ping, Han Zhantao, Li Yasong, Chen Kang, Lv Xiaoli, Jian Ming2013:  The Role of Groundwater Leakage through Deep Wells for the Deformation of Groundwater Flow: a Case Study in Cangzhou Area, Journal of Groundwater Science and Engineering, 1, 80-87.
  • 加载中
图(7) / 表ll (2)
  • 文章访问数:  404
  • HTML全文浏览量:  193
  • PDF下载量:  47
  • 被引次数: 0
  • 收稿日期:  2022-06-16
  • 录用日期:  2022-11-25
  • 网络出版日期:  2023-03-20
  • 刊出日期:  2023-03-15