• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Determination of groundwater potential distribution in Kulfo-Hare watershed through integration of GIS, remote sensing, and AHP in Southern Ethiopia

Edmealem Temesgen Demelash Wendmagegnehu Goshime Destaw Akili

Temesgen E, Goshime DW, Akili D. 2023. Determination of groundwater potential distribution in Kulfo-Hare watershed through integration of GIS, remote sensing, and AHP in Southern Ethiopia. Journal of Groundwater Science and Engineering, 11(3): 249-262 doi:  10.26599/JGSE.2023.9280021
Citation: Temesgen E, Goshime DW, Akili D. 2023. Determination of groundwater potential distribution in Kulfo-Hare watershed through integration of GIS, remote sensing, and AHP in Southern Ethiopia. Journal of Groundwater Science and Engineering, 11(3): 249-262 doi:  10.26599/JGSE.2023.9280021

doi: 10.26599/JGSE.2023.9280021

Determination of groundwater potential distribution in Kulfo-Hare watershed through integration of GIS, remote sensing, and AHP in Southern Ethiopia

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Location map of the study area

    Figure  2.  The rainfall and temperature pattern of the study area

    Figure  3.  Flowchart presenting methodology of the study

    Figure  4.  Lineament density suitability map

    Figure  5.  LULC suitability classification map

    Figure  6.  Study area Geological suitability map

    Figure  7.  Slope suitability classification map

    Figure  8.  Rainfall suitability classification map

    Figure  9.  Soil property suitability classification map

    Figure  10.  Drainage density suitability classification map

    Figure  11.  Groundwater potential distribution map

    Table  1.   Groundwater potential estimation factors and their sources

    Factors Data source Data details Source reference
    Slope ASTER GDEM Version 3, (30 × 30) m https://search.earthdata.nasa.gov
    Drainage density ASTER GDEM Version 3, (30 × 30) m https://search.earthdata.nasa.gov
    Geology Geological survey ASTER Data vector layer: 11 091 958 https://search.earthdata.nasa.gov
    Lineament density Geological survey ASTER Data vector layer: 11 091 958 https://search.earthdata.nasa.gov
    Land use/land cover USGS Landsat 8 (30 × 30) m https://earthexplorer.usgs.gov
    Soil FAO

    Digital soil map of the World http://www.fao.org
    Rainfall CRUTS v. 4.04 High-resolution gridded data, 0.5°×0.5° https://sites.uea.ac.uk/cru/da
    下载: 导出CSV

    Table  2.   Importance scale (1-9) and random consistency index (RI) (Saaty, 1999)

    Intensity 1 2 3 4 5 6 7 8 9
    Definition Equal Weak Moderate Moderate plus Strong Strong plus Very strong Very very strong Extreme
    RI value 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45
    下载: 导出CSV

    Table  3.   Distribution of Lineament density suitability in the area and percent

    No. Area / km2 Area / km2 Suitability class
    1 55.10 8.85 Very low
    2 110.72 17.78 Low
    3 190.6 30.61 Moderate
    4 160.1 25.71 High
    5 106.17 17.05 Very high
    下载: 导出CSV

    Table  4.   Distribution of LULC suitability in area and percentage

    No. LULC class Suitability classification Area / km2 Area / %
    1 Agriculture cultivation land Very high 487.51 78.29
    2 Water bodies High 20.68 3.32
    3 Shrub land High 105.45 16.93
    4 Natural forest Moderate 16.86 2.71
    5 urban Very low 1.55 0.25
    下载: 导出CSV

    Table  5.   Slope suitability distribution in area and percentage

    No. Slope classification Slope classification Suitability class Area / km2 Area / %
    1 <7° Gentle slope Very high 151.11 24.4
    2 7–15° Moderate slope High 191.71 30.8
    3 15–24° Strong slope Moderate 140.45 23.2
    4 24–34° Steep slope Low 98.66 16.1
    5 > 34° Very steep slope Very Low 40.76 6.5
    下载: 导出CSV

    Table  6.   Distribution of rainfall suitability in area and percentage

    No. Rainfall classification / mm Suitability class Area
    / km2
    Area
    / %
    1 114.60–118.88 Very Low 150.33 24.14
    2 118.88–123.10 Low 142.31 22.85
    3 123.10–127.31 Moderate 130.2 20.91
    4 127.31–131.53 High 116.35 18.69
    5 131.53–135.74 Very high 83.5 13.41
    下载: 导出CSV

    Table  7.   Distribution of drainage density suitability in area and percent

    No. Area / km2 Area / % Suitability class
    1 127.87 20.54 Very Low
    2 120.41 19.34 Low
    3 156.38 25.11 Moderate
    4 144.95 23.28 High
    5 73.08 11.73 Very high
    下载: 导出CSV

    Table  8.   Pairwise comparison matrix of 7 groundwater factors from the AHP model

    Factors LULC Soil Geology RF Drainage density Lineament density Slope
    LULC 1 1 3 3 9 9 9
    Soil 1 1 3 3 9 7 9
    Geology 1/3 1/3 1 1 1 3 3
    RF 1/3 1/3 1 1 3 3 3
    Drainage density 1/9 1/9 1 1/3 1 1 3
    lineament Density 1/9 1/7 1/3 1/3 1 1 3
    Slope 1/9 1/9 1/3 1/3 1/3 1/3 1
    下载: 导出CSV

    Table  9.   Groundwater potential factors normalized weight using AHP and their sub-classes rank

    Factors Groundwater potential factors classes Groundwater potential factors suitability AHP normalized weights Influence
    / %
    The rank of sub-classes based on Saaty's scale
    Lineament density 0–0.2
    0.2–0.4
    0.4–0.6
    0.6–0.8
    0.8–1.08
    Very low
    Low
    Moderate
    High
    Very high
    0.03 3 1
    3
    5
    7
    9
    LULC Cultivation land
    Water bodies
    Shrub land
    Natural forest
    Urban
    Very high
    High
    High
    Moderate
    Very low
    0.05 5 9
    9
    8
    5
    1
    Geology formation Quaternary extrusive and intrusive rocks
    Tertiary extrusive and intrusive rock
    Very high
    Very high
    0.34 34 9
    9
    Slope <7° (Gentle)
    7–15° (Moderate)
    15–24° (Strong)
    24–34° (Steep)
    > 34° (Very steep)
    Very high
    High
    Moderate
    Low
    Very Low
    0.1 10 9
    7
    5
    3
    1
    Annual Rainfall (mm) 114.60–118.88
    118.88–123.10
    123.10–127.31
    127.31–131.53
    131.53–135.74
    Very Low
    Low
    Moderate
    High
    Very high
    0.32 32 2
    4
    6
    8
    9
    Soil property Loam
    Sandy loam
    High
    Very high
    0.11 11 9
    8
    Drainage Density <1.8
    1.8–2.6
    2.6–3.4
    3.4–4.2
    >4.2
    Very low
    Low
    Moderate
    High
    Very high
    0.05 5 9
    8
    6
    4
    2
    下载: 导出CSV

    Table  10.   Distribution of groundwater potential area

    No. Suitability area coverage / km2 Suitability
    in / %
    Groundwater potential distribution class
    1 112.92 18.13 Very low
    2 112.51 18.07 Low
    3 152.45 24.48 Moderate
    4 184.12 29.56 High
    5 60.36 9.76 Very high
    下载: 导出CSV
  • Abijith D, Saravanan S, Singh L, et al. 2020. GIS-based multi-criteria analysis for identification of potential groundwater recharge zones: A case study from Ponnaniyaru watershed, Tamil Nadu, India. HydroResearch, 3: 1−14. DOI: 10.1016/j.hydres.2020.02.002.
    Agarwal E, Agarwal R, Garg RD, et al. 2013. Delineation of groundwater potential zone: An AHP/ANP approach. Journal of Earth System Science, 122(3): 887−898. DOI: 10.1007/s12040-013-0309-8.
    Agarwal R, Garg PK. 2016. Remote sensing and GIS-based groundwater potential and recharge zones mapping using multi-criteria decision-making technique. Water Resource Managment, 30(1): 243−260. DOI: 10.1007/s11269-015-1159-8.
    Andualem TG, Demeke GG. 2019. Groundwater potential assessment using GIS and remote sensing: A case study of Guna tana landscape, upper blue Nile Basin, Ethiopia. Journal of Hydrology: Regional Studies, 24: 100610. DOI: 10.1016/j.ejrh.2019.100610.
    Arefin R. 2020. Groundwater potential zone identification at PlioPleistocene elevated tract, Bangladesh: AHP-GIS and remote sensing approach. Groundwater for Sustainable Development, 10: 100340. DOI: 10.1016/j.gsd.2020.100340.
    Arulbalaji P, Padmalal D, Sreelash K. 2019. GIS and AHP techniques based delineation of groundwater potential zones: A case study from southern Western Ghats, India. Scientific Reports, 9(1): 2082. DOI: 10.1038/s41598-019-38567-x.
    Ashebir WY, Marc C, Girma K, et al. 2018. Land use and land cover changes and their effects on the landscape of Abaya-Chamo Basin, Southern Ethiopia. Land, 7(1): 2. DOI: 10.3390/land7010002.
    Bashe BB. 2017. Groundwater potential mapping using remote sensing and GIS in Rift Valley Lakes Basin, Weito Sub Basin, Ethiopia. International Journal of Scientific and Engineering Research, 8(2): 43−50.
    Benjmel K, Amraoui F, Boutaleb S, et al. 2020. Mapping of groundwater potential zones in crystalline terrain using remote sensing, GIS techniques, and multicriteria data analysis (case of the Ighrem region, Western Anti-Atlas, Morocco). Water, 12(2): 471. DOI: 10.3390/w12020471.
    Bhattacharya R, Chatterjee ND, Das K. 2020. An integrated GIS approach to analyze the impact of land use change and land cover alteration on groundwater potential level: A study in Kangsabati Basin, India. Groundwater Sustain Development, 11: 100399. DOI: 10.1016/j.gsd.2020.100399.
    Biswas Arkoprovo, Jana Adarsa, Mandal Animesh. 2013. Application of remote sensing, GIS, and MIF technique for elucidation of groundwater potential zones from a part of Orissa coastal tract, Eastern India. Research Journal of Recent Sciences, 2(11): 42−49.
    Chenini I, Mammou AB, May ME. 2010. Groundwater recharge zone mapping using GIS based multi-criteria analysis: A case study in Central Tunisia (Maknassy Basin). Water Resource Management, 24(5): 921−939. DOI: 10.1007/s11269-009-9479-1.
    Corti G, Sani F, Philippon M, et al. 2013. Quaternary volcano-tectonic activity in the Soddo region, western margin of the southern Main Ethiopian Rift. Tectonics, 32(4): 861−879. DOI: 10.1002/tect.20052.
    Das N, Mukhopadhyay S. 2018. Application of multi-criteria decision-making technique for the assessment of groundwater potential zones: A study on Birbhum district, West Bengal, India. Environmental Development Sustainability, 22(2): 931−955. DOI: 10.1007/s10668-018-0227-7.
    Datta A, Gaikwad H, Kadam A, et al. 2020. Evaluation of groundwater prolific zones in the unconfined basaltic aquifers of Western India using geospatial modeling and MIF technique. Modeling Earth Systems and Environment, 6(3): 1807−1821. DOI: 10.1007/s40808-020-00791-0.
    Ebinger CJ, Yemane T, WoldeGabriel G, et al. 1993. Late Eocene–Recent volcanism and faulting in the southern Main Ethiopian Rift. Journal of the Geological Society, 150(1): 99−108. DOI: 10.1144/gsjgs.150.1.0099.
    Elewa HH, Qaddah AA. 2010. Groundwater potentiality mapping in the Sinai Peninsula, Egypt, using remote sensing and GIS-watershed-based modeling. Hydrogeology Journal, 19: 613−628. DOI: 10.1007/s10040-011-0703-8.
    FAO. 1998. The soil and terrain database for northeastern Africa. Crop production system zones of the IGAD [Intergovernmental Authority on Development] subregion. Rome (Italy): FAO Land and Water Digital Media Series.
    Ghosh A, Mandal M, Banerjee M, et al. 2020. Impact of hydro-geological environment on availability of groundwater using analytical hierarchy process (AHP) and geospatial techniques: A study from the upper Kangsabati river basin. Groundwater for Sustainable Development, 11: 100419. DOI: 10.1016/j.gsd.2020.100419.
    Gintamo TT. 2014. Groundwater potential evaluation. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 10(1): 85–120.
    Hadi A, Christian O, Suman P. 2021. Identification of groundwater potential zones using remote sensing and GIS techniques: A case study of the Shatt Al-arab Basin. Remote Sensing, 13(1): 112. DOI: 10.3390/rs13010112.
    Holden J. 2014. Water resources: An integrated approach. New York: Routledge.
    Hussein AA, Govindu V, Nigusse AGM. 2017. Evaluation of groundwater potential using geospatial techniques. Applied Water Science, 7(5): 2447−2461. DOI: 10.1007/s13201-016-0433-0.
    Jha MK, Chowdary VM, Chowdhury A. 2010. Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system, and multi-criteria decision analysis techniques. Hydrogeology Journal, 18(7): 1713−1728. DOI: 10.1007/s10040-010-0631-z.
    Kaliraj S, Chandrasekar N, Magesh NS. 2013. Identification of potential groundwater recharge zones in Vaigai upper basin, Tamil Nadu, using GIS-based analytical hierarchical process (AHP) technique. Arabian Journal of Geosciences, 7(4): 1385−1401. DOI: 10.1007/s12517-013-0849-x.
    Machiwal D, Jha MK, Mal BC. 2011. Assessment of groundwater potential in a semi-arid region of India using remote sensing, GIS, and MCDM techniques. Water Resource Management, 25: 1359−1386. DOI: 10.1007/s11269-010-9749-y.
    Magesh NS, Chandrasekar N, Soundranayagam JP. 2012. Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geoscience Frontiers, 3(2): 189−196. DOI: 10.1016/j.gsf.2011.10.007.
    Moges DM, Bhat HG, Thrivikramji KP. 2019. Investigation of groundwater resources in highland Ethiopia using geospatial technology. Modeling Earth Systems and Environment, 5(4): 1333−1345. DOI: 10.1007/s40808-019-00603-0.
    Mukherjee P, Singh CK, Mukherjee S. 2012. Delineation of groundwater potential zone in aridregion of India a remote sensing and GIS approach. Water Resource Management, 26: 2643−2672. DOI: 10.1007/s11269-012-0038-9.
    Muniraj K, Jesudhas CJ , Chinnasamy. 2019. A delineation of the groundwater potential zone in Tirunelveli Taluk, South Tamil Nadu, India, using remote sensing, geographical information system (GIS), and analytic hierarchy process (AHP) techniques. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 90(4): 661−676. DOI: 10.1007/s40010-019-00608-5.
    Muralitharan J, Palanivel K. 2015. Groundwater targeting using remote sensing, geographical information system, and analytical hierarchy process method in hard rock aquifer system, Karur district, Tamil Nadu, India. Earth Science Informatics, 8(4): 827−842. DOI: 10.1007/s12145-015-0213-7.
    Murmu P, Kumar M, Lal D, et al. 2019. Delineation of groundwater potential zones using geospatial techniques and analytical hierarchy process in Dumka district, Jharkhand, India. Groundwater Sustainable Development, 9: 100239. DOI: 10.1016/j.gsd.2019.10.
    Mussa KR, Mjemah IC, Machunda RL. 2020. Open-source software application for hydrogeological delineation of potential groundwater recharge zones in the Singida Semi-Arid, Fractured Aquifer, Central Tanzania. Hydrology, 7(2): 28. DOI: 10.3390/hydrology7020028.
    Pankaj P, Victor JL, Mahender K, et al. 2020. Application of machine learning techniques in groundwater potential mapping along the west coast of India. GIScience & Remote Sensing, 57(6): 735−752. DOI: 10.1080/15481603.2020.1794104.
    Patra S, Mishra P, Mahapatra SC. 2018. Delineation of groundwater potential zone for sustainable development: A case study from Ganga alluvial plain covering Hooghly District of India using remote sensing, geographic information system and analytic hierarchy process. Journal of Cleaner Production, 172: 2485−2502. DOI: 10.1016/j.jclepro.2017.11.161.
    Pinto D, Shrestha S, Babel MS, et al. 2017. Delineation of groundwater potential zones in the Comoro watershed, Timor Leste using GIS, remote sensing, and analytic hierarchy process (AHP) technique. Appl Water Science, 7: 503−519. DOI: 10.1007/s13201-015-0270-6.
    Pramanik MK. 2016. Site suitability analysis for agricultural land use of Darjeeling district using AHP and GIS techniques. Modeling Earth Systems and Environment, 2(2): 56. DOI: 10.1007/s40808-016-0116-8.
    Rahmati O, Nazari Samani A, Mahdavi M, et al. 2015. Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arabian Journal of Geosciences, 8(9): 7059−7071. DOI: 10.1007/s12517-014-1668-4.
    Rajasekhar M, Sudarsana Raju G, Sreenivasulu Y, et al. 2019. Delineation of groundwater potential zones in the semi-arid region of Jilledubanderu river basin, Anantapur District, Andhra Pradesh, India using fuzzy logic, AHP, and integrated fuzzy-AHP approaches. HydroResearch, 2: 97−108. DOI: 10.1016/j.hydres.2019.11.006.
    Ramamoorthy P, Rammohan V. 2015. Assessment of groundwater potential zone using remote sensing and GIS in Varahanadhi watershed, Tamilnadu, India. International Journal for Research in Applied Science and Engineering Technology, 3(5): 695−702.
    Razandi Y, Pourghasemi HR, Neisani NS. 2015. Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Science Information, 8(4): 883−886. DOI: 10.1007/s12145-015-0220-8.
    Saaty TL. 1999. Fundamental of analytic network process. Kobe, Japan: In International Symposium of the Analytic Hierarchy Process (ISAHP) .
    Saaty TL, Vargas LG. 2012. Models, Methods, Concepts and Applications of the Analytic Hierarchy Process. New York: Springer Science and Business Media.
    Saha S. 2017. Groundwater potential mapping using analytical hierarchical process: A study on Md. Bazar Block of Birbhum District, West Bengal. Spatial Information Research, 25(4): 615−626. DOI: 10.1007/s41324-017-0127-1.
    Samy IE, Mohamed MM. 2013. Natural hazards susceptibility mapping in the Kuala Lumpur, Malaysia: An assessment using remote sensing and geographic information system (GIS). Geomatics, Natural Hazards and Risk, 4: 1−21. DOI: 10.1080/19475705.2012.684725.
    Samy IE, Shattri M, Bujang BK, et al. 2012. Application of terrain analysis to the mapping and spatial pattern analysis of subsurface geological fractures of Kuala Lumpur limestone bedrock, Malaysia. International Journal of Remote Sensing, 33(10): 3176−3196. DOI: 10.1080/01431161.2011.634860.
    Saranya T, Saravanan S. 2020. Groundwater potential zone mapping using analytical hierarchy process (AHP) and GIS for Kancheepuram District, Tamilnadu, India. Modeling Earth Systems and Environment, 6(2): 1105−1122. DOI: 10.1007/s40808-020-00744-7.
    Sener S, Sener E, Karagüzel R. 2011. Solid waste disposal site selection with GIS and AHP methodology: A case study in SenirkentUluborlu (Isparta) Basin, Turkey. Environmental Monitoring and Assessment, 173(1– 4): 533−554. DOI: 10.1007/s10661-010-1403-x.
    Shahid S, Nath SK, Roy J. 2010. Groundwater potential modeling in a soft rock area using a GIS. International Journal of Remote Sensing, 21(9): 1919−1924. DOI: 10.1080/014311600209823.
    Singh LK, Jha MK, Chowdary VM. 2018. Assessing the accuracy of GIS-based Multi-Criteria Decision Analysis approaches for mapping groundwater potential. Ecological Indicators, 91: 24−37. DOI: 10.1016/j.ecolind.2018.03.070.
    Soumen C, Shyamal D. 2022. Assessment of groundwater potential zone for sustainable water resource management in the southwestern part of Birbhum District, West Bengal. Applied Water Science, 12(3): 40. DOI: 10.1007/s13201-021-01549-4.
    Thapa R, Gupta S, Guin S, et al. 2017. Assessment of groundwater potential zones using the multi-influencing factor (MIF) and GIS: A case study from Birbhum district, West Bengal. Applied Water Science, 7(7): 4117−4131. DOI: 10.1007/s13201-017-0571-z.
    Tolche AD. 2020. Groundwater potential mapping using geospatial techniques: A case study of Dhungeta-Ramis sub-basin, Ethiopia. Geology, Ecology, and Landscapes, 5(1): 65−80. DOI: 10.1080/24749508.2020.1728882.
    Yeh H, Cheng Y, Lin H, et al. 2010. Mapping groundwater recharge potential zone using a GIS approach in Hualian River, Taiwan. Sustainable Environment Research, 26(1): 33−43. DOI: 10.1016/j.serj.2015.09.005.
  • [1] Stephen Pitchaimani V, Narayanan MSS, Abishek RS, Aswin SK, Jerin Joe RJ2024:  Delineation of groundwater potential zones using remote sensing and Geographic Information Systems (GIS) in Kadaladi region, Southern India, Journal of Groundwater Science and Engineering, 12, 147-160. doi: 10.26599/JGSE.2024.9280012
    [2] Rui-fang Meng, Hui-feng Yang, Xi-lin Bao, Bu-yun Xu, Hua Bai, Jin-cheng Li, Ze-xin Liang2023:  Optimizing groundwater recharge plan in North China Plain to repair shallow groundwater depression zone, China, Journal of Groundwater Science and Engineering, 11, 133-145. doi: 10.26599/JGSE.2023.9280012
    [3] Temesgen Mekuriaw Manderso, Yitbarek Andualem Mekonnen, Tadege Aragaw Worku2023:  Application of GIS based analytical hierarchy process and multicriteria decision analysis methods to identify groundwater potential zones in Jedeb Watershed, Ethiopia, Journal of Groundwater Science and Engineering, 11, 221-236. doi: 10.26599/JGSE.2023.9280019
    [4] Abebe Wondmagegn Taye2022:  Evaluation of groundwater resource potential by using water balance model: A case of Upper Gilgel Gibe Watershed, Ethiopia, Journal of Groundwater Science and Engineering, 10, 209-222. doi: 10.19637/j.cnki.2305-7068.2022.03.001
    [5] Dr Muthamilselvan A, Anamika Sekar, Emmanuel Ignatius2022:  Identification of groundwater potential in hard rock aquifer systems using Remote Sensing, GIS and Magnetic Survey in Veppanthattai, Perambalur, Tamilnadu, Journal of Groundwater Science and Engineering, 10, 367-380. doi: 10.19637/j.cnki.2305-7068.2022.04.005
    [6] Tanzeel Khan, Muhammad Akhtar Malik, Gohram Malghani, Rabia Akhtar2022:  Comparative analysis of bacterial contamination in tap and groundwater: A case study on water quality of Quetta City, an arid zone in Pakistan, Journal of Groundwater Science and Engineering, 10, 153-165. doi: 10.19637/j.cnki.2305-7068.2022.02.005
    [7] Niway Wondesen Fikade, Molla Dagnachew Daniel, Lohani Tarun Kumar2022:  Holistic approach of GIS based Multi-Criteria Decision Analysis (MCDA) and WetSpass models to evaluate groundwater potential in Gelana watershed of Ethiopia, Journal of Groundwater Science and Engineering, 10, 138-152. doi: 10.19637/j.cnki.2305-7068.2022.02.004
    [8] Cherif Kessar, Yamina Benkesmia, Bilal Blissag, Lahsen Wahib Kébir2021:  Delineation of groundwater potential zones in Wadi Saida Watershed of NW-Algeria using remote sensing, geographic information system-based AHP techniques and geostatistical analysis, Journal of Groundwater Science and Engineering, 9, 45-64. doi: 10.19637/j.cnki.2305-7068.2021.01.005
    [9] Juandi Muhammad, Nur Islami2021:  Prediction criteria for groundwater potential zones in Kemuning District, Indonesia using the integration of geoelectrical and physical parameters, Journal of Groundwater Science and Engineering, 9, 12-19. doi: 10.19637/j.cnki.2305-7068.2021.01.002
    [10] Dinagarapandi Pandi, Saravanan Kothandaraman, Mohan Kuppusamy2020:  Delineation of potential groundwater zones based on multicriteria decision making technique, Journal of Groundwater Science and Engineering, 8, 180-194. doi: 10.19637/j.cnki.2305-7068.2020.02.009
    [11] Qaisar Mehmood, Muhammad Arshad, Muhammad Rizwan, Shanawar Hamid, Waqas Mehmood, Muhammad Ansir Muneer, Muhammad Irfan, Lubna Anjum2020:  Integration of geoelectric and hydrochemical approaches for delineation of groundwater potential zones in alluvial aquifer, Journal of Groundwater Science and Engineering, 8, 366-380. doi: 10.19637/j.cnki.2305-7068.2020.04.007
    [12] SADIKI Moulay Lhassan, EL MANSOURI Bouabid, BENSEDDIK Badr, CHAO Jamal, KILI Malika, EL MEZOUARY Lhoussaine2019:  Improvement of groundwater resources potential by artificial recharge technique: A case study of Charf El Akab aquifer in the Tangier region, Morocco, Journal of Groundwater Science and Engineering, 7, 224-236. doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.003
    [13] Nouayti Abderrahime, Khattach Driss, Hilali Mohamed, Nouayti Nordine2019:  Mapping potential areas for groundwater storage in the High Guir Basin (Morocco):Contribution of remote sensing and geographic information system, Journal of Groundwater Science and Engineering, 7, 309-322. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.002
    [14] LIU Yu, CHENG Yan-pei, GE Li-qiang2018:  Analysis on exploitation status, potential and strategy of groundwater resources in the five countries of Central Asia, Journal of Groundwater Science and Engineering, 6, 49-57. doi: 10.19637/j.cnki.2305-7068.2018.01.006
    [15] WU Ting-wen, WANG Li-huan, YANG Xiang-kui2017:  Evaluation of groundwater potential and eco-geological environment quality in Sanjiang Plain of Heilongjiang Province, Journal of Groundwater Science and Engineering, 5, 193-201.
    [16] LIU Min, NIE Zhen-long, WANG Jin-zhe, WANG Li-fang, TIAN Yan-liang2016:  An assessment of the carrying capacity of groundwater resources in North China Plain region–Analysis of potential for development, Journal of Groundwater Science and Engineering, 4, 174-187.
    [17] ZHOU Li-ling, CHENG Zhe, DUAN Lei, WANG Wen-ke2015:  Distribution of groundwater salinity and formation mechanism of fresh groundwater in an arid desert transition zone, Journal of Groundwater Science and Engineering, 3, 268-279.
    [18] GONG Xiao-ping, JIANG Guang-hui, CHEN Chang-jie, GUO Xiao-jiao, ZHANG Hua-sheng2015:  Specific yield of phreatic variation zone in karst aquifer with the method of water level analysis, Journal of Groundwater Science and Engineering, 3, 192-201.
    [19] BAI Yu-chun, LI Yong-li, DONG Xue-liang, ZHAO Lei2014:  Analysis and prevention measures for typical geological disasters formation and mechanisms within permafrost zone of Greater Khingan Range, Journal of Groundwater Science and Engineering, 2, 85-93.
    [20] Jingli Shao, Yali Cui, Yunzhang Zhao2013:  A Study on Infiltration and Groundwater Development in the Influent Zone of the Perched Lower Yellow River, Journal of Groundwater Science and Engineering, 1, 46-53.
  • 加载中
图(11) / 表ll (10)
计量
  • 文章访问数:  382
  • HTML全文浏览量:  203
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-25
  • 录用日期:  2023-07-12
  • 网络出版日期:  2023-09-15
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回